In Vitro Influence of a Chemically Characterized Hippophae rhamnoides L. Fruit Extract on Healthy and Constipated Human Gut Microbiota Functionality and Aquaporin-3 Expression
Abstract
1. Introduction
2. Materials and Methods
2.1. H. rhamnoides Extract
2.2. UHPLC Q-Orbitrap HRMS Analysis of H. rhamnoides Extract
2.3. Evaluation of AQP-3 Expression in HT-29 Cells
2.3.1. HT-29 (Intestinal Epithelial Cell Line) Culture Conditions
2.3.2. Cell Viability Determination
2.3.3. Protein Extraction and Western Blot
2.4. In Vitro Digestion
2.5. In Vitro Fermentation
2.6. Antioxidant Capacity Profiling
2.6.1. TPC Determination
2.6.2. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Assay
2.6.3. 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS) Assay
2.6.4. FRAP Assay
2.7. SCFA Analysis
2.8. Statistical Analysis
3. Results
3.1. Metabolite Profile of H. rhamnoides Fruit Extract
| No. | Compound | Retention Time (RT) | Molecular Formula | Adduct/ Ion | Theoretical Mass (m/z) | Measured Mass (m/z) | Accuracy (Δ) | MSI Level |
|---|---|---|---|---|---|---|---|---|
| 1 | Apigenin | 5.28 | C15H10O5 | [M-H]− | 269.04555 | 269.0457 | 0.3717 | 1 |
| 2 | Apigenin 7-glucoside | 5.03 | C21H20O10 | [M-H]− | 431.09837 | 431.0985 | 0.2552 | 1 |
| 3 | Caffeic acid | 4.61 | C9H8O4 | [M-H]− | 179.03403 | 179.0342 | 1.0054 | 1 |
| 4 | Ellagic acid | 4.57 | C14H6O8 | [M-H]− | 300.99899 | 300.9991 | 0.3987 | 1 |
| 5 | Epicatechin | 4.16 | C15H14O6 | [M-H]− | 289.07176 | 289.0723 | 1.7643 | 1 |
| 6 | Isorhamnetin-3-rutinoside | 4.59 | C28O32O16 | [M-H]− | 623.16176 | 623.1622 | 0.6579 | 1 |
| 7 | Kaempferol-3-O-glucoside | 4.61 | C21H20O11 | [M-H]− | 447.09328 | 447.0936 | 0.7157 | 1 |
| 8 | Kaempferol | 5.12 | C15H10O6 | [M-H]− | 285.04046 | 285.0404 | −0.0702 | 1 |
| 9 | Luteolin-7-glucoside | 4.78 | C21H20O11 | [M-H]− | 447.09328 | 447.0938 | 1.1183 | 1 |
| 10 | Naringenin | 5.22 | C15H12O5 | [M-H]− | 271.06119 | 271.0612 | 1.3650 | 1 |
| 11 | p-coumaric acid | 4.36 | C9H8O3 | [M-H]− | 163.04006 | 163.0391 | −2.7601 | 1 |
| 12 | Protocatechuic acid | 2.83 | C7H6O4 | [M-H]− | 153.01933 | 153.0182 | −0.7189 | 1 |
| 13 | Quercetin | 4.85 | C15H10O7 | [M-H]− | 301.03537 | 301.0359 | 1.7274 | 1 |
| 14 | Quercetin 3b glucoside | 4.46 | C21H20O12 | [M-H]− | 463.08819 | 463.0889 | 1.4684 | 1 |
| 15 | Quinic acid | 0.65 | C7H12O6 | [M-H]− | 191.05528 | 191.0562 | 4.9200 | 1 |
| 16 | Rutin | 4.40 | C27H30O16 | [M-H]− | 609.14610 | 609.1461 | 0.0657 | 1 |
| 17 | Syringic acid | 4.30 | C9H10O5 | [M-H]− | 197.04510 | 197.04490 | −1.2180 | 1 |
| 18 | Isorhamnetin | 5.29 | C16H12O7 | [M-H]− | 315.05103 | 315.05140 | 1.0474 | 2 |
| 19 | Isorhamnetin 3-rhamnoside | 5.20 | C22H22O11 | [M-H]− | 461.10893 | 461.10920 | 0.6289 | 2 |
| 20 | Isorhamnetin O-hexoside | 4.65 | C22H22O12 | [M-H]− | 477.10384 | 477.10420 | 0.7336 | 2 |
| 21 | Apigenin-O-hexosy-l-6-C-hexoside | 4.55 | C27H30O15 | [M-H]− | 593.15119 | 593.15230 | 1.9388 | 2 |
| 22 | Quercetin 3-glucoside-7-rhamnoside | 4.26 | C27H30O16 | [M-H]− | 609.14610 | 609.14700 | 1.4282 | 2 |
| 23 | Isorhamnetin-3-rutinoside isomer 2 | 4.39 | C28H32O16 | [M-H]− | 623.16176 | 623.16230 | 0.8505 | 2 |
3.2. Bioaccessibility of H. rhamnoides Fruit Extract After In Vitro Simulated Oro-Gastroduodenal Digestion and Fermentation Processes
3.2.1. Impact on H. rhamnoides Polyphenol Stability
3.2.2. Antioxidant Properties of H. rhamnoides Fruit Extract, Before and After Digestion and Fermentation
3.3. SCFA Analysis
3.4. Intestinal Stimulatory Effect of H. rhamnoides Fruit Extract on Aquaporin-3 Expression
3.4.1. Effect of H. rhamnoides Fruit Extract on Cell Viability
3.4.2. Effect of H. rhamnoides Fruit Extract on AQP-3 Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| FRAP | Ferric Reducing Antioxidant Power (assay) |
| ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (assay) |
| DPPH | 2,2-diphenyl-1-picrylhydrazyl (assay) |
| TPC | Total Polyphenol Content |
| SCFAs | Short-Chain Fatty Acid(s) |
| AQP3 | Aquaporin-3 |
| FC | Functional Constipation |
| UHPLC-RID | Ultra-High Performance Liquid Chromatography |
| HESI | Heated Electrospray Ionization |
| AIF | All Ion Fragmentation |
| MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide |
| DMEM | Dulbecco’s Modified Eagle Medium |
| DMSO | Dimethyl Sulfoxide |
| PMSF | Phenyl-Methyl-Sulfonyl-Fluoride |
| BSA | Bovine Serum Albumin |
| SDS | Sodium Dodecyl Sulfate |
| PBS | Phosphate-Buffered Saline |
| OGD | Oro-Gastroduodenal |
| ROS | Reactive Oxygen Species |
| RID | Ultra-High Performance Liquid Chromatography with Refractive Index Detector |
References
- Vriesman, M.H.; Koppen, I.J.; Camilleri, M.; Di Lorenzo, C.; Benninga, M.A. Management of functional constipation in children and adults. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 21–39. [Google Scholar] [CrossRef]
- Arco, S.; Saldaña, E.; Serra-Prat, M.; Palomera, E.; Ribas, Y.; Font, S.; Clavé, P.; Mundet, L. Functional constipation in older adults: Prevalence, clinical symptoms and subtypes, association with frailty, and impact on quality of life. Gerontology 2022, 68, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Suares, N.C.; Ford, A.C. Prevalence of, and risk factors for, chronic idiopathic constipation in the community: Systematic review and meta-analysis. Am. J. Gastroenterol. 2011, 106, 1582–1591. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.E.; Park, K.S.; Nam, K. Chronic functional constipation. Korean J. Gastroenterol. 2019, 73, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.C.; Yu, S.; Fedewa, A. Systematic review: Dietary fibre and FODMAP-restricted diet in the management of constipation and irritable bowel syndrome. Aliment. Pharmacol. Ther. 2015, 41, 1256–1270. [Google Scholar] [CrossRef]
- Suares, N.C.; Ford, A.C. Systematic review: The effects of fibre in the management of chronic idiopathic constipation. Aliment. Pharmacol. Ther. 2011, 33, 895–901. [Google Scholar] [CrossRef]
- Ashraf, W.; Park, F.; Lof, J.; Quigley, E.M.M. Effects of psyllium therapy on stool characteristics, colon transit and anorectal function in chronic idiopathic constipation. Aliment. Pharmacol. Ther. 1995, 9, 639–647. [Google Scholar] [CrossRef]
- Pannemans, J.; Masuy, I.; Tack, J. Functional constipation: Individualising assessment and treatment. Drugs 2020, 80, 947–963. [Google Scholar] [CrossRef]
- Liu, T.; Asif, I.M.; Bai, C.; Huang, Y.; Li, B.; Wang, L. The effectiveness and safety of natural food and food-derived extract supplements for treating functional gastrointestinal disorders—Current perspectives. Nutr. Rev. 2024, 83, nuae047. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Safety of hydroxyanthracene derivatives for use in food. EFSA J. 2018, 16, e05090. [Google Scholar] [CrossRef]
- Wani, T.A.; Wani, S.M.; Ahmad, M.; Ahmad, M.; Gani, A.; Masoodi, F.A. Bioactive profile, health benefits and safety evaluation of sea buckthorn (Hippophae rhamnoides L.): A review. Cogent Food Agric. 2016, 2, 1128519. [Google Scholar] [CrossRef]
- Ma, Q.G.; He, N.X.; Huang, H.L.; Fu, X.M.; Zhang, Z.L.; Shu, J.C.; Wang, Q.Y.; Chen, J.; Wu, G.; Zhu, M.N.; et al. Hippophae rhamnoides L.: A comprehensive review on the botany, traditional uses, phytonutrients, health benefits, quality markers, and applications. J. Agric. Food Chem. 2023, 71, 4769–4788. [Google Scholar] [CrossRef] [PubMed]
- Suryakumar, G.; Gupta, A. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). J. Ethnopharmacol. 2011, 138, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, F.; Wei, P.; Chai, X.; Hou, G.; Meng, Q. Phytochemistry, health benefits, and food applications of sea buckthorn (Hippophae rhamnoides L.): A comprehensive review. Front. Nutr. 2022, 9, 1036295. [Google Scholar] [CrossRef]
- Gâtlan, A.M.; Gutt, G. Sea buckthorn in plant based diets. An analytical approach of sea buckthorn fruits composition: Nutritional value, applications, and health benefits. Int. J. Environ. Res. Public Health 2021, 18, 8986. [Google Scholar] [CrossRef]
- Hanif, M.; Mehmood, M.H.; Ishrat, G.; Abdullah, A.; Sohail, S.; Ahmed, M.; Gilani, A.H. Evaluation of prokinetic and laxative effects of Hippophae rhamnoides in rodents. Pak. J. Pharm. Sci. 2019, 32, 2527–2533. [Google Scholar]
- Izzo, L.; Castaldo, L.; Lombardi, S.; Gaspari, A.; Grosso, M.; Ritieni, A. Bioaccessibility and antioxidant capacity of bioactive compounds from various typologies of canned tomatoes. Front. Nutr. 2022, 9, 849163. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.O.R.S.T.E.N.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Buccato, D.G.; Delgado-Osorio, A.; De Lellis, L.F.; Morone, M.V.; Ullah, H.; Izzo, L.; Lombardi, S.; Di Minno, A.; Riccioni, C.V.; Moriki, D.; et al. Exploring the influence of a pomegranate extract on the functionality of healthy and diseased human gut microbiota: An in vitro study. Molecules 2025, 30, 1634. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Molino, S.; Navajas-Porras, B.; Valverde-Moya, Á.J.; Hinojosa-Nogueira, D.; López-Maldonado, A.; Pastoriza, S.; Rufián-Henares, J.Á. An in vitro batch fermentation protocol for studying the contribution of food to gut microbiota composition and functionality. Nat. Protoc. 2021, 16, 3186–3209. [Google Scholar] [CrossRef]
- Moreno-Montoro, M.; Olalla-Herrera, M.; Gimenez-Martinez, R.; Navarro-Alarcon, M.; Rufián-Henares, J.A. Phenolic compounds and antioxidant activity of Spanish commercial grape juices. J. Food Compos. Anal. 2015, 38, 19–26. [Google Scholar] [CrossRef]
- Yen, G.; Chen, H. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Panzella, L.; Pérez-Burillo, S.; Pastoriza, S.; Martín, M.Á.; Cerruti, P.; Goya, L.; Ramos, S.; Rufián-Henares, J.Á.; Napolitano, A.; d’Ischia, M. High Antioxidant action and prebiotic activity of hydrolyzed spent coffee grounds (HSCG) in a simulated digestion–fermentation model: Toward the development of a novel food supplement. J. Agric. Food Chem. 2017, 65, 6452–6459. [Google Scholar] [CrossRef]
- Jiménez-Zamora, A.; Delgado-Andrade, C.; Rufián-Henares, J.A. Antioxidant capacity, total phenols and color profile during the storage of selected plants used for infusion. Food Chem. 2016, 199, 339–346. [Google Scholar] [CrossRef]
- Chen, K.D.; Wang, K.L.; Chen, C.; Zhu, Y.J.; Tang, W.W.; Wang, Y.J.; Chen, Z.P.; He, L.H.; Chen, Y.G.; Zhang, W. Hydrogen-rich water alleviates constipation by attenuating oxidative stress through the sirtuin1/nuclear factor-erythroid-2-related factor 2/heme oxygenase-1 signaling pathway. World J. Gastroenterol. 2024, 30, 2709–2725. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Bosscher, D.; Breynaert, A.; Pieters, L.; Hermans, N. Food-based strategies to modulate the composition of the intestinal microbiota and their associated health effects. J. Physiol. Pharmacol. 2009, 60 (Suppl. 6), 5–11. [Google Scholar]
- Laparra, J.M.; Sanz, Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res. 2010, 61, 219–225. [Google Scholar] [CrossRef]
- Pan, R.; Wang, L.; Xu, X.; Chen, Y.; Wang, H.; Wang, G.; Zhao, J.; Chen, W. Crosstalk between the Gut Microbiome and Colonic Motility in Chronic Constipation: Potential Mechanisms and Microbiota Modulation. Nutrients 2022, 14, 3704. [Google Scholar] [CrossRef]
- Li, Y.; Li, P.; Yang, K.; He, Q.; Wang, Y.; Sun, Y.; He, C.; Xiao, P. Impact of drying methods on phenolic components and antioxidant activity of sea buckthorn (Hippophae rhamnoides L.) berries from different varieties in China. Molecules 2021, 26, 7189. [Google Scholar] [CrossRef] [PubMed]
- Ursache, F.M.; Ghinea, I.O.; Turturică, M.; Aprodu, I.; Râpeanu, G.; Stănciuc, N. Phytochemicals content and antioxidant properties of sea buckthorn (Hippophae rhamnoides L.) as affected by heat treatment–Quantitative spectroscopic and kinetic approaches. Food Chem. 2017, 233, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Sne, E.; Seglina, D.; Galoburda, R.; Krasnova, I. Content of phenolic compounds in various sea buckthorn parts. Proc. Latv. Acad. Sci. Sect. B 2013, 67, 411–415. [Google Scholar]
- Kant, V.; Mehta, M.; Varshneya, C. Antioxidant potential and total phenolic contents of seabuckthorn (Hippophae rhamnoides) pomace. Free. Radic. Antioxid. 2012, 2, 79–86. [Google Scholar] [CrossRef]
- He, Q.; Yang, K.; Wu, X.; Zhang, C.; He, C.; Xiao, P. Phenolic compounds, antioxidant activity and sensory evaluation of sea buckthorn (Hippophae rhamnoides L.) leaf tea. Food Sci. Nutr. 2023, 11, 1212–1222. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, A.I.; Díaz-Sánchez, Á.G.; de la Rosa, L.A.; Vargas-Requena, C.L.; Bustos-Jaimes, I.; Alvarez-Parrilla, E. Polyphenolic compounds and digestive enzymes: In vitro non-covalent interactions. Molecules 2017, 22, 669. [Google Scholar] [CrossRef]
- Bermúdez-Soto, M.J.; Tomás-Barberán, F.A.; García-Conesa, M.T. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chem. 2007, 102, 865–874. [Google Scholar] [CrossRef]
- Hao, Y.; Yang, J.; Cui, J.; Fan, Y.; Li, N.; Wang, C.; Liu, Y.; Dong, Y. Stability and mechanism of phenolic compounds from raspberry extract under in vitro gastrointestinal digestion. LWT 2021, 139, 110552. [Google Scholar] [CrossRef]
- Stalmach, A.; Edwards, C.A.; Wightman, J.D.; Crozier, A. Gastrointestinal stability and bioavailability of (poly) phenolic compounds following ingestion of Concord grape juice by humans. Mol. Nutr. Food Res. 2012, 56, 497–509. [Google Scholar] [CrossRef]
- Mandalari, G.; Tomaino, A.; Rich, G.T.; Curto, R.L.; Arcoraci, T.; Martorana, M.; Bisignano, C.; Saija, A.; Parker, M.L.; Waldron, K.W.; et al. Polyphenol and nutrient release from skin of almonds during simulated human digestion. Food Chem. 2010, 122, 1083–1088. [Google Scholar] [CrossRef]
- Xie, L.; Deng, Z.; Zhang, J.; Dong, H.; Wang, W.; Xing, B.; Liu, X. Comparison of flavonoid O-glycoside, C-glycoside and their aglycones on antioxidant capacity and metabolism during in vitro digestion and in vivo. Foods 2022, 11, 882. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Alcaraz, O.; Acosta, M.; Arnao, M.B. On-line antioxidant activity determination: Comparison of hydrophilic and lipophilic antioxidant activity using the ABTS•+ assay. Redox Rep. 2002, 7, 103–109. [Google Scholar] [CrossRef]
- Stevens, J.F.; Maier, C.S. The chemistry of gut microbial metabolism of polyphenols. Phytochem. Rev. 2016, 15, 425–444. [Google Scholar] [CrossRef]
- Parkar, S.G.; Trower, T.M.; Stevenson, D.E. Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe 2013, 23, 12–19. [Google Scholar] [CrossRef]
- Gibson, G.R.; Macfarlane, G.T.; Cummings, J.H. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut 1993, 34, 437. [Google Scholar] [CrossRef]
- Benoit, S.L.; Maier, R.J.; Sawers, R.G.; Greening, C. Molecular hydrogen metabolism: A widespread trait of pathogenic bacteria and protists. Microbiol. Mol. Biol. Rev. 2020, 84, 10–1128. [Google Scholar] [CrossRef]
- Abudureheman, B.; Yu, X.; Fang, D.; Zhang, H. Enzymatic oxidation of tea catechins and its mechanism. Molecules 2022, 27, 942. [Google Scholar] [CrossRef]
- Di Pede, G.; Bresciani, L.; Calani, L.; Petrangolini, G.; Riva, A.; Allegrini, P.; Del Rio, D.; Mena, P. The human microbial metabolism of quercetin in different formulations: An in vitro evaluation. Foods 2020, 9, 1121. [Google Scholar] [CrossRef]
- Koh, A.; de Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.N.; Bondy, S.C. Dietary fibers and their fermented short-chain fatty acids in prevention of human diseases. Bioact. Carbohydr. Diet. Fibre 2019, 17, 100170. [Google Scholar] [CrossRef]
- Terrapon, N.; Henrissat, B. How do gut microbes break down dietary fiber? Trends Biochem. Sci. 2014, 39, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Canani, R.B.; Costanzo, M.D.; Leone, L.; Pedata, M.; Meli, R.; Calignano, A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol. 2011, 17, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cen, S.; Wang, G.; Lee, Y.; Zhao, J.; Zhang, H.; Chen, W. Acetic acid and butyric acid released in large intestine play different roles in the alleviation of constipation. J. Funct. Foods 2020, 69, 103953. [Google Scholar] [CrossRef]
- Rondeau, M.P.; Meltzer, K.; Michel, K.E.; McManus, C.M.; Washabau, R.J. Short chain fatty acids stimulate feline colonic smooth muscle contraction. J. Feline Med. Surg. 2003, 5, 167–173. [Google Scholar] [CrossRef]
- Fukumoto, S.; Tatewaki, M.; Yamada, T.; Fujimiya, M.; Mantyh, C.; Voss, M.; Eubanks, S.; Harris, M.; Pappas, T.N.; Takahashi, T. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R1269–R1276. [Google Scholar] [CrossRef]
- Niccolai, E.; Baldi, S.; Ricci, F.; Russo, E.; Nannini, G.; Menicatti, M.; Poli, G.; Taddei, A.; Bartolucci, G.; Calabrò, A.S.; et al. Evaluation and comparison of short chain fatty acids composition in gut diseases. World J. Gastroenterol. 2019, 25, 5543. [Google Scholar]
- Zhang, S.; Wang, R.; Li, D.; Zhao, L.; Zhu, L. Role of gut microbiota in functional constipation. Gastroenterol. Rep. 2021, 9, 392–401. [Google Scholar] [CrossRef]
- Guzel, T.; Mirowska-Guzel, D. The Role of Serotonin Neurotransmission in Gastrointestinal Tract and Pharmacotherapy. Molecules 2022, 27, 1680. [Google Scholar] [CrossRef]
- Dimidi, E.; Scott, S.M.; Whelan, K. Probiotics and constipation: Mechanisms of action, evidence for effectiveness and utilisation by patients and healthcare professionals. Proc. Nutr. Soc. 2020, 79, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Zoppi, G.; Cinquetti, M.; Luciano, A.; Benini, A.; Muner, A.; Minelli, E.B. The intestinal ecosystem in chronic functional constipation. Acta Paediatr. 1998, 87, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Khalif, I.L.; Quigley, E.M.; Konovitch, E.A.; Maximova, I.D. Alterations in the colonic flora and intestinal permeability and evidence of immune activation in chronic constipation. Dig. Liver Dis. 2005, 37, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Choi, S.C.; Park, K.S.; Park, M.I.; Shin, J.E.; Lee, T.H.; Jung, K.W.; Koo, H.S.; Myung, S.J.; Constipation Research Group of the Korean Society of Neurogastroenterology and Motility. Change of fecal flora and effectiveness of the short-term VSL#3 probiotic treatment in patients with functional constipation. J. Neurogastroenterol. Motil. 2015, 21, 111–120. [Google Scholar] [CrossRef]
- Mancabelli, L.; Milani, C.; Lugli, G.A.; Turroni, F.; Mangifesta, M.; Viappiani, A.; Ticinesi, A.; Nouvenne, A.; Meschi, T.; van Sinderen, D.; et al. Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses. Sci. Rep. 2017, 7, 9879. [Google Scholar] [CrossRef]
- Duncan, S.H.; Holtrop, G.; Lobley, G.E.; Calder, A.G.; Stewart, C.S.; Flint, H.J. Contribution of acetate to butyrate formation by human faecal bacteria. Br. J. Nutr. 2004, 9, 915–923. [Google Scholar] [CrossRef]
- Ikarashi, N.; Kon, R.; Sugiyama, K. Aquaporins in the colon as a new therapeutic target in diarrhea and constipation. Int. J. Mol. Sci. 2016, 17, 1172. [Google Scholar] [CrossRef]
- Zhang, H.; Zu, Q.; Zhang, J.; Liu, S.; Zhang, G.; Chang, X.; Li, X. Soluble dietary fiber of hawthorn relieves constipation induced by loperamide hydrochloride by improving intestinal flora and inflammation, thereby regulating the aquaporin ion pathway in mice. Foods 2024, 13, 2220. [Google Scholar] [CrossRef]
- Yin, J.; Liang, Y.; Wang, D.; Yan, Z.; Yin, H.; Wu, D.; Su, Q. Naringenin induces laxative effects by upregulating the expression levels of c-Kit and SCF, as well as those of aquaporin 3 in mice with loperamide-induced constipation. Int. J. Mol. Med. 2018, 41, 649–658. [Google Scholar] [CrossRef]
- Lee, H.Y.; Hossain, M.K.; Kim, S.H.; Jeong, P.Y.; Lee, G.H.; Kim, D.S.; Chung, M.J.; Chae, H.J. Improving intestinal health and mitigating Loperamide-Induced constipation through the modulation of Aquaporin-3 expression, reduction of oxidative stress, and suppression of inflammatory response by fermented rice extract. J. Funct. Foods 2024, 121, 106444. [Google Scholar] [CrossRef]



| Compound | Extract | OGDd | OGDd + Healthy Fermentation | OGDd + Constipated Fermentation | |||
|---|---|---|---|---|---|---|---|
| Peak Area | Peak Area | % * | Peak Area | % ** | Peak Area | % ** | |
| Apigenin | 76 4,449 | 3,585,579 | 469 | 251,837 | 33 | 245,638 | 32 |
| Apigenin 7-glucoside | 58,124,033 | 74,123,957 | 128 | - | - | - | - |
| Caffeic acid | 186,219,833 | 135,329,204 | 73 | 24,684,355 | 13 | 20,598,877 | 11 |
| Ellagic acid | 53,430,815 | 7,121,377 | 13 | 2,283,194 | 4 | 1,758,333 | 3 |
| Epicatechin | 10,388,184 | 7,738,589 | 74 | 231,339 | 2 | - | - |
| Isorhamnetin-3-rutinoside | 526,701,724 | 561,802,160 | 107 | 440,88 | - | 525,187 | |
| Kaempferol-3-O-glucoside | 6,113,790 | 13,573,552 | 222 | - | - | - | - |
| Kaempferol | 32,240,801 | 26,524,808 | 82 | 6,080,500 | 19 | 1,2676,549 | 39 |
| Luteolin-7-glucoside | 44,000,357 | 47,449,461 | 108 | - | - | - | - |
| Naringenin | 9,635,719 | 3,144,428 | 33 | - | - | - | - |
| p-coumaric acid | 15,667,015 | 58,505,710 | 373 | 6,090,097 | 39 | 2,729,409 | 17 |
| Protocatechuic acid | 653,822,251 | 587,967,397 | 90 | 142,184,305 | 22 | 153,486,892 | 23 |
| Quercetin | 89,848,197 | 66,872,166 | 74 | 2,437,755 | 3 | 9,147,528 | 10 |
| Quercetin 3b glucoside | 48,934,260 | 38,834,407 | 79 | - | - | - | - |
| Quinic acid | 11,992,365,593 | 13,776,026,003 | 115 | 14,122,718,903 | 118 | 4,230,495,179 | 35 |
| Rutin | 41,976,587 | 26,302,844 | 63 | - | - | - | - |
| Syrngic acid | 3,979,140 | 4,354,804 | 109 | - | - | - | - |
| Isorhamnetin | 1,015,697,080 | 819,638,512 | 81 | 121,932,130 | 12 | 322,293,781 | 32 |
| Isorhamnetin-3-rhamnoside | 338,481,439 | 392,946,764 | 116 | 2,398,967 | 1 | 1,226,830 | - |
| Isorhamnetin-O-hexoside | 264,713,668 | 309,070,065 | 117 | 46,390 | - | 832,470 | - |
| Apigenin-O-hexosy-l-6-C-hexoside | 17,554,150 | 15,805,754 | 90 | - | - | - | - |
| Quercetin 3-glucoside-7-rhamnoside | 3,836,755 | 5,314,855 | 139 | - | - | - | - |
| Isorhamnetin-3-rutinoside isomer 2 | 87,761,236 | 120,142,322 | 137 | - | - | - | - |
| total area | 15,502,257,076 | 17,102,174,718 | 14,431,383,861 | 4,756,016,672 | |||
| % total area | 100 | 110 | 90 | 30 | |||
| Assay | Before In Vitro Digestion | After In Vitro Digestion | After In Vitro Fermentation | |
|---|---|---|---|---|
| Healthy Adults | Constipated Adults | |||
| FOLIN-CIOCALTEU | 2924.2 ± 62.5 | 2235.7± 119.7 | 982.6 ± 19.9 ** | 587.3 ± 46.6 |
| DPPH | 201.8 ± 5.3 | 202.5 ± 6.6 | 30.6 ± 1.7 ns | 45.9 ± 4.9 |
| ABTS | 35.5 ± 2.7 a | 59.3 ± 0.7 | 21.2 ± 1.1 * | 15.9 ± 0.6 |
| FRAP | 194.6 ± 30.8 a | 145.4 ± 3.8 | 2.9 ± 0 **** | 0 ± 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Lellis, L.F.; Toledano-Marín, Á.; Navarro-Moreno, M.; Caiazzo, E.; Madonna, G.; Delgado-Osorio, A.; Buccato, D.G.; Izzo, L.; Paolillo, A.; Di Minno, A.; et al. In Vitro Influence of a Chemically Characterized Hippophae rhamnoides L. Fruit Extract on Healthy and Constipated Human Gut Microbiota Functionality and Aquaporin-3 Expression. Foods 2025, 14, 3800. https://doi.org/10.3390/foods14213800
De Lellis LF, Toledano-Marín Á, Navarro-Moreno M, Caiazzo E, Madonna G, Delgado-Osorio A, Buccato DG, Izzo L, Paolillo A, Di Minno A, et al. In Vitro Influence of a Chemically Characterized Hippophae rhamnoides L. Fruit Extract on Healthy and Constipated Human Gut Microbiota Functionality and Aquaporin-3 Expression. Foods. 2025; 14(21):3800. https://doi.org/10.3390/foods14213800
Chicago/Turabian StyleDe Lellis, Lorenza Francesca, Ángela Toledano-Marín, Miguel Navarro-Moreno, Elisabetta Caiazzo, Gennaro Madonna, Adriana Delgado-Osorio, Daniele Giuseppe Buccato, Luana Izzo, Antonio Paolillo, Alessandro Di Minno, and et al. 2025. "In Vitro Influence of a Chemically Characterized Hippophae rhamnoides L. Fruit Extract on Healthy and Constipated Human Gut Microbiota Functionality and Aquaporin-3 Expression" Foods 14, no. 21: 3800. https://doi.org/10.3390/foods14213800
APA StyleDe Lellis, L. F., Toledano-Marín, Á., Navarro-Moreno, M., Caiazzo, E., Madonna, G., Delgado-Osorio, A., Buccato, D. G., Izzo, L., Paolillo, A., Di Minno, A., Ullah, H., Morone, M. V., De Filippis, A., Galdiero, M., Ialenti, A., Rufián Henares, J. Á., & Daglia, M. (2025). In Vitro Influence of a Chemically Characterized Hippophae rhamnoides L. Fruit Extract on Healthy and Constipated Human Gut Microbiota Functionality and Aquaporin-3 Expression. Foods, 14(21), 3800. https://doi.org/10.3390/foods14213800

