Conference Reports
Universe 2018, 4(12), 141; https://doi.org/10.3390/universe4120141
The latest global analysis of neutrino oscillation data indicates that the normal neutrino mass ordering is favored over the inverted one at the
level. The best-fit values of the largest neutrino mixing angle
and the Dirac CP-violating phase
are located in the higher octant and the third quadrant, respectively. We show that these experimental trends can be naturally explained by the
-
reflection symmetry breaking, triggered by the one-loop renormalization-group equations (RGEs) running from a superhigh energy scale down to the electroweak scale in the framework of the minimal supersymmetric standard model (MSSM). The complete parameter space is numerically explored for both the Majorana and Dirac cases, by allowing the smallest neutrino mass
and the MSSM parameter
to vary within their reasonable ranges.
Full text download
Universe 2018, 4(12), 136; https://doi.org/10.3390/universe4120136
We consider the 6D Cascading DGP model, a braneworld model which is a promising candidate to realize the phenomenon of the degravitation of vacuum energy. Focusing on a recently proposed thin limit description of the model, we study solutions where the induced metric on the codimension-2 brane is of the de Sitter form. While these solutions have already been recovered in the literature imposing by hand the bulk to be flat, we show that it is possible to derive them without making this assumption, by solving a suitably chosen subset of the bulk equations.
Full text download
Universe 2018, 4(12), 134; https://doi.org/10.3390/universe4120134
Due to the so-called
3He shortage crisis, many detection techniques for thermal neutrons are currently based on alternative converters. There are several possible ways of increasing the detection efficiency for thermal neutrons using the solid neutron-to-charge converters
10B or
10B
4C. Here, we present an investigation of the Micromegas technology. The micro-pattern gaseous detector Micromegas was developed in the past years at Saclay and is now used in a wide variety of neutron experiments due to its combination of high accuracy, high rate capability, excellent timing properties, and robustness. A large high-efficiency Micromegas-based neutron detector is proposed for thermal neutron detection, containing several layers of
10B
4C coatings that are mounted inside the gas volume. The principle and the fabrication of a single detector unit prototype with overall dimension of ~15 × 15 cm
2 and its possibility to modify the number of
10B
4C neutron converter layers are described. We also report results from measurements that are verified by simulations, demonstrating that typically five
10B
4C layers of 1–2 μm thickness would lead to a detection efficiency of 20% for thermal neutrons and a spatial resolution of sub-mm. The high potential of this novel technique is given by the design being easily adapted to large sizes by constructing a mosaic of several such detector units, resulting in a large area coverage and high detection efficiencies. An alternative way of achieving this is to use a multi-layered Micromegas that is equipped with two-side
10B
4C-coated gas electron multiplier (GEM)-type meshes, resulting in a robust and large surface detector. Another innovative and very promising concept for cost-effective, high-efficiency, large-scale neutron detectors is by stacking
10B
4C-coated microbulk Micromegas. A prototype was designed and built, and the tests so far look very encouraging.
Full text download
Universe 2018, 4(10), 110; https://doi.org/10.3390/universe4100110
Light waves carry along their own gravitational field; for simple plain electromagnetic waves, the gravitational field takes the form of a
-wave. I present the corresponding exact solution of the Einstein–Maxwell equations and discuss the dynamics of classical particles and quantum fields in this gravitational and electromagnetic background.
Full text download
Universe 2018, 4(9), 92; https://doi.org/10.3390/universe4090092
Quantum resolutions of the space-time singularity at the end of gravitational collapse may provide hints towards the properties of a final theory of Quantum-Gravity. The mechanism by which the singularity is avoided and replaced by a bounce depends on the specific behaviour of gravity in the strong field and may have implications for the geometry of the space-time also in the weak field. In the last few decades, several scenarios for black hole bounces have been proposed and I shall argue that the times are now mature to ask the question of whether such bounces can be observed in astrophysical phenomena.
Full text download
Universe 2018, 4(8), 90; https://doi.org/10.3390/universe4080090
Gravity is the only force which is telling us about the existence of Dark Matter. I will review the idea that this must be the case because Dark Matter is nothing else than a manifestation of Gravity itself, in the guise of an additional, massive, spin-2 particle.
Full text download
Universe 2018, 4(8), 89; https://doi.org/10.3390/universe4080089
Quantum cosmology based on the Wheeler De Witt equation represents a simple way to implement plausible quantum effects in a gravitational setup. In its minisuperspace version wherein one restricts attention to FLRW metrics with a single scale factor and only a few degrees of freedom describing matter, one can obtain exact solutions and thus acquire full knowledge of the wave function. Although this is the usual way to treat a quantum mechanical system, it turns out however to be essentially meaningless in a cosmological framework. Turning to a trajectory approach then provides an effective means of deriving physical consequences.
Full text download
Universe 2018, 4(8), 88; https://doi.org/10.3390/universe4080088
The huge amounts of undetected and exotic dark matter and dark energy needed to make general relativity work on large scales argue that we should investigate modifications of gravity. The only stable, metric-based and invariant alternative to general relativity is
f(
R) models. These models can explain primordial inflation, but they cannot dispense with either dark matter or dark energy. I advocate nonlocal modifications of gravity, not as new fundamental theories but rather as the gravitational vacuum polarization engendered by infrared quanta produced during primordial inflation. I also discuss some of the many objections which have been raised to this idea.
Full text download
Universe 2018, 4(8), 87; https://doi.org/10.3390/universe4080087
In this article, I mainly discuss the dynamics of the pre-inflationary Universe for the potential
with
in the context of loop quantum cosmology, in which the big bang singularity is resolved by a non-singular quantum bounce. In the case of the kinetic energy-dominated initial conditions of the scalar field at the bounce, the numerical evolution of the Universe can be split up into three regimes:
bouncing, transition, and
slow-roll inflation. In the bouncing regime, the numerical evolution of the scale factor does not depend on a wide range of initial values, or on the inflationary potentials. I calculate the number of
e-folds in the slow-roll regime, by which observationally identified initial conditions are obtained. Additionally, I display the phase portrait for the model under consideration.
Full text download
Universe 2018, 4(8), 85; https://doi.org/10.3390/universe4080085
The gravitational wave provides a new method to examine General Relativity and its alternatives in the high speed, strong field regime. Alternative theories of gravity generally predict more polarizations than General Relativity, so it is important to study the polarization contents of theories of gravity to reveal the nature of gravity. In this talk, we analyze the polarization contents of Horndeski theory and
gravity. We find out that in addition to the familiar plus and cross polarizations, a
massless Horndeski theory predicts an extra transverse polarization, and there is a mix of pure longitudinal and transverse breathing polarizations in the
massive Horndeski theory and
gravity. It is possible to use pulsar timing arrays to detect the extra polarizations in these theories. We also point out that the classification of polarizations using Newman–Penrose variables cannot be applied to massive modes. It cannot be used to classify polarizations in Einstein-æther theory or generalized Tensor-Vector-Scalar (TeVeS) theory, either.
Full text download
Universe 2018, 4(8), 84; https://doi.org/10.3390/universe4080084
In this paper , the polarization contents of Einstein-æther theory and the generalized TeVeS theory are studied. The Einstein-æther theory has five polarizations, while the generalized TeVeS theory has six. In particular, transverse and longitudinal breathing polarization are mixed. The possibility of using pulsar timing arrays to detect the extra polarizations in Einstein-æther theory was also investigated. The analysis showed that different polarizations cannot be easily distinguished by using pulsar timing arrays in this theory. For generalized TeVeS theory, one of the propagating modes travels much faster than the speed of light due to the speed bound set by GW170817. In some parameter subspaces, the strong coupling does not take place, so this theory is excluded.
Full text download
Universe 2018, 4(8), 82; https://doi.org/10.3390/universe4080082
A local phenomenological model that reduces to a non-local gravitational theory giving dark energy is proposed. The non-local gravity action is known to fit the data as well as
-CDM thereby demanding a more fundamental local treatment. It is seen that the scale-invariant higher-derivative scalar-tensor theory of gravity, which is known to be ultraviolet perturbative renormalizable to all loops and where ghosts become innocuous, generates non-locality at low energies. The local action comprises of two real scalar fields coupled non-minimally with the higher-derivative gravity action. When one of the scalar acquiring the Vacuum Expectation Value (VEV) induces Einstein–Hilbert gravity, generates mass for fields, and gets decoupled from system, it leaves behind a residual theory which in turn leads to a non-local gravity generating dark energy effects.
Full text download
Universe 2018, 4(7), 79; https://doi.org/10.3390/universe4070079
Einstein’s theory of general relativity was proposed over 100 years ago and has successfully passed a large number of observational tests in the weak field regime. However, the strong field regime is largely unexplored, and there are many modified and alternative theories that have the same predictions as Einstein’s gravity for weak fields and present deviations when gravity becomes strong.
relxill_nk is the first relativistic reflection model for probing the spacetime metric in the vicinity of astrophysical black holes and testing Einstein’s gravity in the strong field regime. Here, we present our current constraints on possible deviations from Einstein’s gravity obtained from the black holes in 1H0707–495, Ark 564, GX 339–4, and GS 1354–645.
Full text download
Universe 2018, 4(6), 72; https://doi.org/10.3390/universe4060072
High-density nuclear symmetry energy is of crucial importance in astrophysics. Information on such energy has been obtained from mass–radius determinations of neutron stars (NSs), and in the future NS mergers will increasingly contribute. In the laboratory, the symmetry energy can be studied in heavy-ion collisions (HICs) at different incident energies over a large range, from very low to several times higher saturation density. Transport theory is necessary to extract the symmetry energy from the typically non-equilibrated nuclear collisions. In this contribution, we first review the transport approaches, their differences, and recent studies of their reliability. We then discuss several prominent observables, which have been used to determine the symmetry energy at high density: collective flow, light cluster emission, and particle production. It is finally argued that the results of the symmetry energy from microscopic many-body calculations, nuclear structure, nuclear reactions, and astrophysics begin to converge but still need considerable improvements in terms of accuracy.
Full text download
Universe 2018, 4(3), 45; https://doi.org/10.3390/universe4030045
We construct a dense matter equation of state (EoS) starting from a hadronic density dependent relativistic mean-field model with a DD2 parametrization including the excluded volume corrections at low densities. The high density part is given by a Nambu–Jona–Lasinio (NJL) model with multi-quark interactions. This EoS is characterized by increasing speed of sound below and above the phase transition region. The first order transition region has a large latent heat leaving a distinctive signature in the mass-radii relations in terms of twin stars.
Full text download
Universe 2018, 4(2), 41; https://doi.org/10.3390/universe4020041
Strange stars are one of the possible compact stellar objects formed in the core collapse of supernovae. These hypothetical stars are made by deconfined quark matter and are selfbound. In our study, we focus on the torsional oscillations of a non bare strange star, i.e., a strange star with a thin crust made of standard nuclear matter. We construct a theoretical model assuming that the inner parts of the star are in two different phases, namely the color flavour locked phase and the crystalline colour superconducting phase. Since the latter phase is rigid, with a large shear modulus, it corresponds to a first stellar crust. Above this crust a second small crust made by standard nuclear matter is suspended thanks to a strong electromagnetic dipolar moment. We focus on the electromagnetically coupled oscillations of the two stellar crusts. Notably, we find that if a small fraction of the energy of a glitch event like a typical Vela glitch is conveyed in torsional oscillations, the small nuclear crust will likely break. This is due to the fact that in this model the maximum stress, due to torsional oscillations, is likely located near the star surface.
Full text download
Universe 2018, 4(2), 37; https://doi.org/10.3390/universe4020037
Simulating Many Accelerated Strongly-interacting Hadrons (SMASH) is a new hadronic transport approach designed to describe the non-equilibrium evolution of heavy-ion collisions. The production of strange particles in such systems is enhanced compared to elementary reactions (Blume and Markert 2011), providing an interesting signal to study. Two different strangeness production mechanisms are discussed: one based on resonances and another using forced canonical thermalization. Comparisons to experimental data from elementary collisions are shown.
Full text download
Universe 2018, 4(2), 19; https://doi.org/10.3390/universe4020019
The non-Euclidean geometry created by Bolyai, Lobachevsky and Gauss has led to a new physical theory—general relativity. In due turn, a correct mathematical treatment of the cosmological problem in general relativity has led Friedmann to a discovery of dynamical equations for the universe. And now, after almost a century of theoretical and experimental research, cosmology has a status of the most rapidly developing fundamental science. New challenges here are problems of dark energy and dark matter. As a result, a lot of modifications of general relativity appear recently. The bigravity is one of them, constructed with a couple of interacting space–time metrics accompanied by some coupling to matter. We discuss here this approach and different kinds of the coupling.
Full text download
Universe 2018, 4(1), 1; https://doi.org/10.3390/universe4010001
Knowledge of the equation of state (EoS) of cold and dense baryonic matter is essential for the description of properties of neutron stars (NSs). With an increase of the density, new baryon species can appear in NS matter, as well as various meson condensates. In previous works, we developed relativistic mean-field (RMF) models with hyperons and
-isobars, which passed the majority of known experimental constraints, including the existence of a
neutron star. In this contribution, we present results of the inclusion of
-meson condensation into these models. We have shown that, in one class of the models (so-called KVOR-based models, in which the additional stiffening procedure is introduced in the isoscalar sector), the condensation gives only a small contribution to the EoS. In another class of the models (MKVOR-based models with additional stiffening in isovector sector), the condensation can lead to a first-order phase transition and a substantial decrease of the NS mass. Nevertheless, in all resulting models, the condensation does not spoil the description of the experimental constraints.
Full text download
Universe 2017, 3(4), 79; https://doi.org/10.3390/universe3040079
Analysis of directed flow (
) of protons, antiprotons and pions in heavy-ion collisions is performed in the range of collision energies
= 2.7–39 GeV. Simulations have been done within a three-fluid model employing a purely hadronic equation of state (EoS) and two versions of the EoS with deconfinement transitions: a first-order phase transition and a smooth crossover transition. The crossover EoS is unambiguously preferable for the description of experimental data at lower collision energies
20 Gev. However, at higher collision energies
20 Gev. the purely hadronic EoS again becomes advantageous. This indicates that the deconfinement EoS in the quark-gluon sector should be stiffer at high baryon densities than those used in the calculation. The latter finding is in agreement with that discussed in astrophysics in connection with existence of hybrid stars with masses up to about two solar masses.
Full text download
Universe 2017, 3(2), 49; https://doi.org/10.3390/universe3020049
The observability of the multiverse is at the very root of its physical significance as a scientific proposal. In this conference we present, within the third quantization formalism, an interacting scheme between the wave functions of different universes and analyze the effects of some particular values of the coupling function. One of the main consequences of the interaction between universes can be the appearance of a pre-inflationary stage in the evolution of the universes that might leave observable consequences in the properties of the CMB.
Full text download
Universe 2017, 3(2), 46; https://doi.org/10.3390/universe3020046
The main task of this review is to discuss quantum cosmology minisuperspace models based on the Wheeler–DeWitt equation, which apart from the standard matter and 3-geometry configuration degrees of freedom, allow those related to the variability of physical constants—varying speed of light (VSL)
c and varying gravitational constant
G. The tunneling probability of the universe “from nothing” to the Friedmann phase will be given for such varying constants minisuperspace models.
Full text download
Universe 2017, 3(2), 41; https://doi.org/10.3390/universe3020041
Using the existing simplified model framework, we build several dark matter models which have suppressed spin-independent scattering cross section. We show that the scattering cross section can vanish due to interference effects with models obtained by simple combinations of simplified models. For weakly interacting massive particle (WIMP) masses ≳10 GeV, collider limits are usually much weaker than the direct detection limits coming from LUX or XENON100. However, for our model combinations, LHC analyses are more competitive for some parts of the parameter space. The regions with direct detection blind spots can be strongly constrained from the complementary use of several Large Hadron Collider (LHC) searches like mono-jet, jets + missing transverse energy, heavy vector resonance searches, etc. We evaluate the strongest limits for combinations of scalar + vector, “squark” + vector, and scalar + “squark” mediator, and present the LHC 14 TeV projections.
Full text download
Universe 2017, 3(2), 44; https://doi.org/10.3390/universe3020044
Two new high-precision measurements of the deuterium abundance from absorbers along the line of sight to the quasar PKS1937–1009 were presented. The absorbers have lower neutral hydrogen column densities (N(HI) ≈ 18 cm
) than for previous high-precision measurements, boding well for further extensions of the sample due to the plenitude of low column density absorbers. The total high-precision sample now consists of 12 measurements with a weighted average deuterium abundance of D/H =
. The sample does not favour a dipole similar to the one detected for the fine structure constant. The increased precision also calls for improved nucleosynthesis predictions. For that purpose we have updated the public AlterBBN code including new reactions, updated nuclear reaction rates, and the possibility of adding new physics such as dark matter. The standard Big Bang Nucleosynthesis prediction of D/H =
is consistent with the observed value within 1.7 standard deviations.
Full text download
Universe 2017, 3(2), 36; https://doi.org/10.3390/universe3020036
Quantum gravity is the theory that is expected to successfully describe systems that are under strong gravitational effects while at the same time being of an extreme quantum nature. When this principle is applied to the universe as a whole, we use what is commonly named “quantum cosmology”. So far we do not have a definite quantum theory of gravity or cosmology, but we have several promising approaches. Here we will review the application of the Wheeler–DeWitt formalism to the late-time universe, where it might face a Big Rip future singularity. The Big Rip singularity is the most virulent future dark energy singularity which can happen not only in general relativity but also in some modified theories of gravity. Our goal in this paper is to review two simple setups of the quantisation of the Big Rip in a Friedmann–Lemaître–Robertson–Walker universe within general relativity and in a modified theory of gravity.
Full text download
Universe 2017, 3(2), 35; https://doi.org/10.3390/universe3020035
We describe an alternative way to use future Baryon Acoustic Oscillation observations to perform non-mainstream research. We focus on the so-called Varying Speed of Light theories, in which the speed of light is made to vary in time. Using prescriptions from future BAO surveys (BOSS, DESI,
WFirst-2.4 and SKA), we show that, within such surveys, a 1% Varying Speed of Light (VSL) signal could be detected at 3 sigmas confidence level, in the redshift interval [0.75, 1.45]. Smaller signals will be hardly detected. We also discuss some possible problems related to such kinds of observation, in particular, the degeneracy between a VSL signal and a non-null spatial curvature.
Full text download
Universe 2017, 3(2), 32; https://doi.org/10.3390/universe3020032
Hot white dwarf stars are the ideal probe for a relationship between the fine-structure constant and strong gravitational fields, providing us with an opportunity for a direct observational test. We study a sample of hot white dwarf stars, combining far-UV spectroscopic observations, atomic physics, atmospheric modelling, and fundamental physics in the search for variation in the fine structure constant. This variation manifests as shifts in the observed wavelengths of absorption lines, such as quadruply ionized iron (FeV) and quadruply ionized nickel (NiV), when compared to laboratory wavelengths. Berengut et al. (
Phys. Rev. Lett. 2013,
111, 010801) demonstrated the validity of such an analysis using high-resolution Space Telescope Imaging Spectrograph (STIS) spectra of G191-B2B. We have made three important improvements by: (a) using three new independent sets of laboratory wavelengths; (b) analysing a sample of objects; and (c) improving the methodology by incorporating robust techniques from previous studies towards quasars (the Many Multiplet method). A successful detection would be the first direct measurement of a gravitational field effect on a bare constant of nature. Here we describe our approach and present preliminary results from nine objects using both FeV and NiV.
Full text download
Universe 2017, 3(2), 30; https://doi.org/10.3390/universe3020030
ESPRESSO is a high-resolution-ultra-stable spectrograph for the Very Large Telescope (VLT), whose commissioning will start in 2017. One of its key science goals is to test the stability of nature’s fundamental couplings with unprecedented accuracy and control of possible systematics. A total of 27 nights of the ESPRESSO Consortium’s guaranteed time observations (GTO) will be spent on testing the stability of the fine-structure constant and other fundamental couplings. A set of 14 priority optimal targets have been selected for the GTO period. In this work, we discuss the criteria underlying this selection, describe the selected targets, and present some forecasts of the impact of these measurements on fundamental physics and cosmology, focusing on dark energy constraints and using future supernova type Ia surveys as a comparison point. This report is a summary of the results reported in
Phys. Rev. D 2016,
94, 123512, to which we refer the reader for further details.
Full text download
Universe 2017, 3(2), 28; https://doi.org/10.3390/universe3020028
In this report, we consider cosmological implications of quantum entanglement between two causally disconnected universes in the multiverse. Supposing that our universe was initially entangled with a causally separated universe, we compute the spectrum of vacuum fluctuations of our universe. To clearly see the effect of entanglement, we compare it with the spectrum of an initially non-entangled state. It is found that, due to quantum interference, scale-dependent modulations may enter the spectrum for the case of an initially non-entangled state. We discuss that the existence of causally disconnected universes may be experimentally tested by analyzing correlators in detail.
Full text download
Universe 2017, 3(1), 16; https://doi.org/10.3390/universe3010016
Some important problems of general relativity, such as the quantisation of gravity or classical singularity problems, crucially depend on geometry on very small scales. The so-called synthetic differential geometry—a categorical counterpart of the standard differential geometry—provides a tool to penetrate infinitesimally small portions of space-time. We use this tool to show that on any “infinitesimal neighbourhood” the components of the curvature tensor are themselves infinitesimal, and construct a simplified model in which the curvature singularity disappears, owing to this effect. However, one pays a price for this result. Using topoi as a generalisation of spaces requires a weakening of arithmetic (the existence of infinitesimals) and of logic (to the intuitionistic logic). Is this too high a price to pay for acquiring a new method of solving unsolved problems in physics? Without trying, we shall never know the answer.
Full text download
Universe 2017, 3(1), 2; https://doi.org/10.3390/universe3010002
We study quantum correlation of a massive scalar field in a maximally entangled state in de Sitter space. We prepare two observers, one in a global chart and the other in an open chart of de Sitter space. We find that the state becomes less entangled as the curvature of the open chart gets larger. In particular, for the cases of a massless and a conformally coupled scalar field, the quantum entanglement vanishes in the limit of infinite curvature. However, we find that the quantum discord never disappears, even in the limit that entanglement disappears.
Full text download
Universe 2016, 2(4), 34; https://doi.org/10.3390/universe2040034
We have constrained the spatial variation of the fine structure constant using multi-frequency measurements of the thermal Sunyaev-Zeldovich effect of 618 X-ray selected clusters. Although our results are not competitive with the ones from quasar absorption lines, we improved by a factor 10 and ∼2.5 previous results from Cosmic Microwave Background power spectrum and from galaxy clusters, respectively.
Full text download
Universe 2016, 2(4), 29; https://doi.org/10.3390/universe2040029
Local Lorentz invariance (LLI) is one of the most important fundamental symmetries in modern physics. While the possibility of LLI violation (LLIv) was studied extensively in flat spacetime, its counterpart in gravitational interaction also deserves significant examination from experiments. In this contribution, I review several recent studies of LLI in post-Newtonian gravity, using powerful tools of pulsar timing. It shows that precision pulsar timing experiments hold a unique position to probe LLIv in post-Newtonian gravity.
Full text download