
universe

Conference Report

Quantum Correlations in de Sitter Space

Jiro Soda 1,*, Sugumi Kanno 2,3 and Jonathan P. Shock 4

1 Department of Physics, Kobe University, Kobe 657-8501, Japan
2 Department of Theoretical Physics and History of Science, University of the Basque Country,

48080 Bilbao, Spain; sugumi.kanno@ehu.es
3 IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
4 Laboratory for Quantum Gravity and Strings and Astrophysics, Cosmology and Gravity Center,

Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag,
Rondebosch 7701, South Africa; jonathan.shock@uct.ac.za

* Correspondence: jiro@phys.sci.kobe-u.ac.jp
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Abstract: We study quantum correlation of a massive scalar field in a maximally entangled state in
de Sitter space. We prepare two observers, one in a global chart and the other in an open chart of de
Sitter space. We find that the state becomes less entangled as the curvature of the open chart gets
larger. In particular, for the cases of a massless and a conformally coupled scalar field, the quantum
entanglement vanishes in the limit of infinite curvature. However, we find that the quantum discord
never disappears, even in the limit that entanglement disappears.
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1. Introduction

The quantum entanglement between two free modes of a scalar field becomes less entangled if
observers who detect each mode are relatively accelerated. In fact, the authors in [1,2] considered
two free modes of a scalar field in flat space. One is detected by an observer in an inertial frame, and the
other by a uniformly accelerated observer. They evaluated the entanglement negativity—a measure of
entanglement for mixed states—between the two free modes (which started in a maximally entangled
state) to characterize the quantum entanglement, and found that the entanglement disappeared for the
observer in the limit of infinite acceleration.

From the view of the equivalence principle, it is interesting to extend the analysis to curved
spacetime. Recently, entanglement entropy—a measure of entanglement for pure states—in de Sitter
spacetime has been studied in the Bunch–Davies vacuum [3]. Moreover, entanglement negativity—a
measure of entanglement for mixed states—has been also studied in [4]. It turns out that the
entanglement negativity disappears in the infinite curvature limit, which is consistent with the result
of accelerating system.

It was recently shown that quantum entanglement is not the only kind of quantum correlations
possible, and are merely a particular characterization of quantumness. In fact, other quantum
correlations have now been experimentally found, and quantum discord is known to be a measure
of all quantum correlations, including entanglement [5,6]. This measure can be non-zero, even in
the absence of entanglement. In order to see the observer dependence of all quantum correlations
(i.e., the total quantumness), the quantum discord between two free modes of a scalar field in flat
space—which are detected by two observers in inertial and non-inertial frames, respectively—has also
been discussed [7,8]. They found that the quantum discord—in contrast to the entanglement—never
disappears, even in the limit of infinite acceleration. Again, from the view of the equivalence principle,
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it is important to verify if the same happens in de Sitter cases. This has been done by us in [9], and this
contribution is a report of the work.

The organization of the paper is as follows. In Section 2, we review the quantum information
theoretic basis of quantum discord. In Section 3, we quantize a free massive scalar field in de Sitter
space, and we introduce two observers, Alice and Bob, who detect two free modes of the scalar field
which start in an entangled state. We obtain the density operator for Alice and Bob. In Section 4,
we compute the entanglement negativity. In Section 5, we evaluate the quantum discord in de Sitter
space. In the final section, we summarize our results.

2. Quantum Discord

Quantum discord is a measure of all quantum correlations (including entanglement) for
two subsystems [5,6]. For a mixed state, this measure can be nonzero, even if the state is unentangled.
It is defined by quantum mutual information and computed by optimizing over all possible
measurements that can be performed on one of the subsystems.

In classical information theory, the mutual information between two random variables A and B is
defined as

I(A, B) = H(A) + H(B)− H(A, B) , (1)

where the Shannon entropy H(A) ≡ −∑A P(A) log2 P(A) is used to quantify the
ignorance of information about the variable A with probability P(A), and the joint entropy
H(A, B) = −∑A,B P(A, B) log2 P(A, B) with the joint probability P(A, B) of both events A and B
occurring. The mutual information (1) measures how much information A and B have in common.

Using Bayes theorem, the joint probability can be written in terms of the conditional probability as

P(A, B) = P(B)P(A|B) , (2)

where P(A|B) is the probability of A given B. The joint entropy can then be written as
H(A, B) = −∑A,B P(A, B) (log2 P(B) + log2 P(A|B)).

Plugging this into Equation (1), the mutual information can be expressed as

I(A, B) = H(A)− H(A|B) , (3)

where P(B) = ∑A P(A, B) has been used, and the conditional entropy is defined as
H(A|B) = −∑A,B P(B)P(A|B) log2 P(A|B); i.e., the average over B of Shannon entropy of event A,
given B. Equations (1) and (3) are classically equivalent expressions for the mutual information.

If we try to generalize the concept of mutual information to a quantum system, the above
two equivalent expressions do not yield identical results, because measurements performed on
subsystem B disturb subsystem A. In a quantum system, the Shannon entropy is replaced by the von
Neumann entropy S(ρ) = −Trρ log2 ρ, where ρ is a density matrix. The probabilities P(A, B), P(A),
and P(B) are replaced, respectively, by the density matrix of the whole system ρA,B, the reduced density
matrix of subsystem A, ρA = TrBρA,B, and the reduced density matrix of subsystem B, ρB = TrAρA,B.

In order to extend the idea of the conditional probability P(A|B) to the quantum system, we use
projective measurements of B described by a complete set of projectors {Πi} = {|ψi〉〈ψi|}, where i
distinguishes different outcomes of a measurement on B. There are of course many different sets of
measurements that we can make. Then, the state of A after the measurement of B is given by

ρA|i =
1
pi

TrB (ΠiρA,BΠi) , pi = TrA,B (ΠiρA,BΠi) . (4)
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A quantum analog of the conditional entropy can then be defined as

S(A|B) ≡ min
{Πi}

∑
i

pi S(ρA|i) , (5)

which corresponds to the measurement that least disturbs the overall quantum state; that is, to avoid
dependence on the projectors.

Thus, the quantum mutual information corresponding to the two expressions Equations (1) and (3)
is defined, respectively, by

I(A, B) = S(ρA) + S(ρB)− S(ρA,B) , (6)

J(A, B) = S(ρA)− S(A|B) . (7)

The quantum discord is then defined as the difference between the above two expressions

D(A, B) = I(A, B)− J(A, B) = S(ρB)− S(ρA,B) + S(A|B) . (8)

The quantum discord thus vanishes in classical mechanics, however it appears not to in some
quantum systems.

3. Setup of Quantum States

We consider a free scalar field φ with mass m in de Sitter space represented by the metric gµν.
The action is given by

S =
∫

d4x
√
−g
[
−1

2
gµν∂µφ ∂νφ− m2

2
φ2
]

. (9)

The coordinate systems of open charts in de Sitter space with the Hubble radius H−1 can be
divided into two parts, which we call R and L. Their metrics are given, respectively, by

ds2
R = H−2

[
−dt2

R + sinh2 tR

(
dr2

R + sinh2 rR dΩ2
)]

,

ds2
L = H−2

[
−dt2

L + sinh2 tL

(
dr2

L + sinh2 rL dΩ2
)]

,
(10)

where dΩ2 is the metric on the two-sphere. Note that the regions L and R covered by the coordinates
(tL, rL) and (tR, rR), respectively, are the two causally disconnected open charts of de Sitter space.
The harmonic functions Yp`m on the three-dimensional hyperbolic space are defined by

−L2Yp`m =
(

1 + p2
)

Yp`m , (11)

where the eigenvalues p normalized by H take positive real values. We define a mass parameter

ν =

√
9
4
− m2

H2 . (12)

The Bogoliubov transformation between the Bunch–Davies vacuum and R, L vacua, derived
in [3], is expressed as

|0p〉BD =
√

1− |γp|2
∞

∑
n=0

γn
p |nk〉L|np〉R , (13)
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where the states |np〉L and |np〉R span the Fock space for the L and R open charts. Here, eigenvalue γp

is given by

γp = i
√

2√
cosh 2πp + cos 2πν +

√
cosh 2πp + cos 2πν + 2

. (14)

Note that in the case of conformal invariance (ν = 1/2) and masslessness (ν = 3/2), we have
|γp| = e−πp.

The solutions in the Bunch–Davies vacuum are related to those in the R, L vacua through
Bogoliubov transformations. Using the transformation, we find that the ground state of a given mode
seen by an observer in the global chart corresponds to a two-mode squeezed state in the open charts.
These two modes correspond to the fields observed in the R and L charts. If we probe only one of the
open charts (say L), we have no access to the modes in the causally disconnected R region and must
therefore trace over the inaccessible region. This situation is analogous to the relationship between an
observer in a Minkowski chart and another in one of the two Rindler charts in flat space, in the sense
that the global chart and Minkowski chart cover the whole spacetime geometry, while open charts and
Rindler charts cover only a portion of the spacetime geometry, and thus horizons exist.

We start with two maximally entangled modes with p = k and s of the free massive scalar field in
de Sitter space,

|ψ〉 = 1√
2

(
|0s〉BD|0k〉BD + |1s〉BD|1k〉BD

)
. (15)

We assume that an observer, Alice, in the global chart has a detector which only detects mode s
and another observer, Bob, in an open chart has a detector sensitive only to mode k. When Bob resides
in the L region, the Bunch–Davies vacuum with mode k can be expressed as a two-mode squeezed
state of the R and L vacua

|0k〉BD =
√

1− |γk|2
∞

∑
n=0

γn
k |nk〉L|nk〉R . (16)

The single particle excitation state is then calculated from Equation (16) as

|1k〉BD =
1− |γk|2√

2

∞

∑
n=0

γn
k

√
n + 1

[
|(n + 1)k〉L |nk〉R + |nk〉L |(n + 1)k〉R

]
. (17)

Since the R region is inaccessible to Bob, we need to trace over the states in the R region. If we
plug Equations (16) and (17) into the initial maximally entangled state (15), the reduced density matrix
after tracing out the states in the R region is represented as

ρA,B =
1− |γk|2

2

∞

∑
m=0
|γk|2m ρm , (18)

where

ρm = |0m〉〈0m|+
√

1− |γk|2
2

√
m + 1

(
γk|0 m + 1〉〈1m|+ γ∗k |1m〉〈0 m + 1|

)
+

√
1− |γk|2

2

√
m + 1

(
|0m〉〈1 m + 1|+ |1 m + 1〉〈0m|

)
+

1− |γk|2
2

(m + 1)
(
|1m〉〈1m|+ |1 m + 1〉〈1 m + 1|

)
+

1− |γk|2
2

√
(m + 1)(m + 2)

(
γk |1 m + 2 〉〈1m|+ γ∗k |1m〉〈1 m + 2 |

)
,
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with |mn〉 = |ms〉BD|nk〉L. This is a mixed state.

4. Entanglement Negativity

Let us first calculate the entanglement negativity—a measure of entanglement for mixed states.
This measure is defined by the partial transpose, the non-vanishing of which provides a sufficient
criterion for entanglement. If at least one eigenvalue of the partial transpose is negative, then the
density matrix is entangled.

If we take the partial transpose with respect to Alice’s subsystem, then we find

ρT
A,B =

1− |γk|2
2

∞

∑
m=0
|γk|2m ρT

m , (19)

where

ρT
m = |0m〉〈0m|+

√
1− |γk|2

2

√
m + 1

(
γk|1 m + 1〉〈0m|+ γ∗k |0m〉〈1 m + 1|

)
+

√
1− |γk|2

2

√
m + 1

(
|1m〉〈0 m + 1|+ |0 m + 1〉〈1m|

)
+

1− |γk|2
2

(m + 1)
(
|1m〉〈1m|+ |1 m + 1〉〈1 m + 1|

)
+

1− |γk|2
2

√
(m + 1)(m + 2)

(
γk |1 m + 2 〉〈1m|+ γ∗k |1m〉〈1 m + 2 |

)
.

The negativity is defined by summing over all the negative eigenvalues

N = ∑
λi<0
|λi| . (20)

and there exists no entanglement when N = 0. However, this measure is not additive and not suitable
for multiple subsystems. The logarithmic negativity is thus a better measure than the negativity in this
scenario, and is defined as

LN = log2 (2N+ 1) . (21)

The state is entangled when LN 6= 0. We sum over all negative eigenvalues and calculate the
logarithmic negativity. We focus on Alice and Bob’s detectors for modes of momentum s and k, and
thus do not integrate either over k, nor a volume integral over the hyperboloid. We plot the logarithmic
negativity in Figure 1. For ν = 1/2 and 3/2, the logarithmic negativity vanishes in the limit of
k → 0; that is, in the limit of infinite curvature. This is consistent with the flat space result, where
the entanglement vanishes in the limit of infinite acceleration of the observer. Here we stress that the
entanglement weakens, but survives even in the limit of infinite curvature for a massive scalar field
other than ν = 1/2 and ν = 3/2, as can be seen from Figure 1.
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LN

k

Figure 1. Plots of the logarighmic negativity as a function of k. The blue line is for ν = 0, 1; the yellow
is for ν = 1/4, 5/4; and the green is for ν = 1/2, 3/2.

5. Quantum Discord in de Sitter Space

Next we calculate the overall quantumness of the system given by the quantum discord. We will
make our measurement on Alice’s side. The quantum discord is

Dθ = S(ρA)− S(ρA,B) + S(B|A) . (22)

To calculate the above, we rewrite the state (18) as

ρA,B =
1− |γk|2

2

(
|0〉〈0| ⊗M00 + |0〉〈1| ⊗M01 + |1〉〈0| ⊗M10 + |1〉〈1| ⊗M11

)
, (23)

where we define

M00 =
∞

∑
m=0
|γk|2m |m〉〈m| , (24)

M01 =

√
1− |γk|2

2

∞

∑
m=0

√
m + 1 |γk|2m

(
γk |m + 1〉〈m|+ |m〉〈m + 1|

)
, (25)

M10 = M†
01

=

√
1− |γk|2

2

∞

∑
m=0

√
m + 1 |γk|2m

(
γ∗k |m〉〈m + 1|+ |m + 1〉〈m|

)
,

(26)

M11 =
1− |γk|2

2

∞

∑
m=0

(m + 1) |γk|2m
(
|m〉〈m|+ |m + 1〉〈m + 1|

)
+

1− |γk|2
2

∞

∑
m=0

√
(m + 1) (m + 2) |γk|2m

(
γk |m + 2〉〈m|+ γ∗k |m〉〈m + 2|

)
.

(27)

The state is split into Alice’s subsystem (two dimensions) and Bob’s subsystem (infinite
dimensional). Then, Alice’s density matrix is easy to obtain as

ρA = TrBρAB =
1
2

(
|0〉〈0|+ |1〉〈1|

)
, (28)

and we get S(ρA) = −Tr ρA log2 ρA = 1. For the von Neumann entropy of the whole system S(ρA,B),
we need to find the eigenvalues of ρA,B numerically.
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In order to calculate the quantum conditional entropy S(B|A), we restrict ourselves to projective
measurements on Alice’s subsystem described by a complete set of projectors

Π± =
I ± xi σi

2
=

1
2

(
1± x3 ± (x1 − ix2)

± (x1 + ix2) 1∓ x3

)
, (29)

where xixi = x2
1 + x2

2 + x2
3 = 1, I is the 2× 2 identity matrix and σi are the Pauli matrices. Here, a

choice of the xi corresponds to a choice of measurement, and we will thus be interested in the particular
measurement which minimises the disturbance on the system. Then, the density matrix after the
measurement is

ρB|± =
1

p±
Π±ρABΠ± . (30)

The trace of it is calculated as

TrρB|± =
1

p±
Tr (Π±ρAB)

=
1− |γk|2

4p±

[
(1± x3) M00 + (1∓ x3) M11 ± (x1 + ix2) M01 ± (x1 − ix2) M10

]
,

(31)

where we used Π2
± = Π± and

p± = TrAB Π±ρAB =
1− |γk|2

4

[
(1± x3)TrM00 + (1∓ x3)TrM11

]
=

1
2

. (32)

By using the parametrization x1 = sin θ cos φ , x2 = sin θ sin φ , x3 = cos θ , ρB|± is found to be
independent of the phase factor φ:

ρB|± =
1− |γk|2

2

[
(1± cos θ) M00 + (1∓ cos θ) M11 ± sin θM01 ± sin θM10

]
. (33)

Thus, the quantum discord (22) is now expressed as

Dθ = 1 + TrρAB log2 ρAB −
1
2

(
TrρB|+ log2 ρB|+ + TrρB|− log2 ρB|−

)
. (34)

We will find eigenvalues of ρA,B, ρB|+ and ρB|− numerically, and find θ that minimizes the above
Dθ . We found that θ = π/2 minimize Dθ . Note that the convergence of the sum for ρA,B is not fast
for ν = 1/2 and 3/2 in the limit of k → 0, because |γk|2m in the summation becomes 1, so we have
truncated our plot for small k.

We plot the quantum discord in Figure 2. For ν = 1/2 and 3/2, the quantum discord does not
vanish, even in the limit of k → 0; that is, in the limit of infinite curvature. This is consistent with
the flat space result where the quantum discord survives even in the limit of infinite acceleration of
the observer.
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Dθ

k

Figure 2. Plots of the quantum discord as a function of k. The blue line is for ν = 0, 1; the yellow is for
ν = 1/4, 5/4; and the green is for ν = 1/2, 3/2.

6. Discussion

In this work, we investigated quantum discord between two free modes of a massive scalar field
in a maximally entangled state in de Sitter space. We introduced two observers—one in a global
chart and the other in an open chart of de Sitter space—and then determined the quantum discord
created by each detecting one of the modes. This situation is analogous to the relationship between an
observer in Minkowski space and another in one of the two Rindler wedges in flat space. In the case
of Rindler space, it is known that the entanglement vanishes when the relative acceleration becomes
infinite [1]. In de Sitter space, on the other hand, the observer’s relative acceleration corresponds to
the scale of the curvature of the open chart. We first evaluated entanglement negativity, and then
quantum discord in de Sitter space. We found that the state becomes less entangled as the curvature of
the open chart gets larger. In particular, for a massless scalar field ν = 3/2 and a conformally coupled
scalar field ν = 1/2, the entanglement negativity vanishes in the limit of infinite curvature. However,
we showed that quantum discord does not disappear, even in the limit that the entanglement negativity
vanishes. In addition, we found that both the entanglement negativity and quantum discord survive
even in the limit of infinite curvature for a massive scalar field. These findings seem to support the
equivalence principle.

It is intriguing to observe that our results indicate that quantum discord may gives rise to an
observable signature of quantumness of primordial fluctuations generated during inflation. If observed,
this would be strong evidence for an inflationary scenario.
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