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Abstract: The huge amounts of undetected and exotic dark matter and dark energy needed to
make general relativity work on large scales argue that we should investigate modifications of
gravity. The only stable, metric-based and invariant alternative to general relativity is f (R) models.
These models can explain primordial inflation, but they cannot dispense with either dark matter or
dark energy. I advocate nonlocal modifications of gravity, not as new fundamental theories but rather
as the gravitational vacuum polarization engendered by infrared quanta produced during primordial
inflation. I also discuss some of the many objections which have been raised to this idea.
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1. Introduction

The case for nonlocal modifications of gravity is easy to make:

(1) The amount of “dark” stress-energy needed to make general relativity work strains credulity.
(2) The only metric-based, local, generally coordinate invariant and potentially stable alternative

to general relativity is f (R) models [1]. These can explain primordial inflation [2], but neither
cosmic structures nor the current phase of cosmic acceleration.

(3) Although fundamental nonlocality seems problematic, nonlocal corrections to the effective field
equations from loops of massless particles can give macroscopic effects, and those associated
with the vast amount of inflationary particle production become nonperturbatively strong.

I discuss each of these points in Sections 2–4, respectively. Section 5 reviews four of the criticisms
which have been raised to my work. My conclusions comprise Section 6.

2. Shortcomings of Dark Matter and Energy

Einstein’s equation,
Gµν = 8πGTµν , (1)

relates second and lower derivatives of the metric to the stress-energy tensor Tµν. No matter what
metric gµν you want, there is a Tµν which makes the equation true; general relativity is only tested
when both sides are known. We know both sides of the equation for stars, but that ceases to be true
on larger scales. Dark matter is needed to explain galaxies and galaxy clusters, while dark energy is
invoked to explain the current phase of cosmic acceleration. Dark energy at a scale 1055 higher is the
usual explanation for the early phase of accelerated expansion known as primordial inflation. In this
section, I review why these explanations are problematic.

2.1. The Willing Suspension of Disbelief

Let me start with the sheer magnitude of exotic material which is required right now. We are
told that only 4.6% of the current energy density of the universe can consist of anything we have ever
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detected in a laboratory. To explain cosmic structures, general relativity needs approximately 23% of
the current energy density to consist of “dark matter” which has the equation of state of nonrelativistic
matter but only interacts weakly. Explaining the current phase of cosmic acceleration requires that a
whopping 72% of the current energy must consist of “dark energy” which has the equation of state of
vacuum energy and interacts at most weakly.

None of this stuff has been seen, except gravitationally. The properties of dark energy do not
require that it be visible in Earth-bound labs but dark matter should be, and it has not shown up.
Two WIMP (Weakly Interacting Massive Partciles) searches of unprecedented sensitivity reported last
year: neither the Xenon 1-ton experiment [3] nor PandaX-II [4] has detected anything. The continued
failure to find dark matter has shaken the faith of even some passionate believers. To be sure, certain
candidates such as Axions are still viable [5]. There is also very interesting recent work [6] on the old
idea that dark matter might might not be exotic at all, but consists instead of normal matter which
formed primordial black holes during inflation [7].

2.2. Unexplained Regularities of Cosmic Structures

For me, the real problem with dark matter is its failure to explain observed regularities in cosmic
structures. These are well explained by Milgrom’s MOdified Newtonian Dynamics (MOND) [8–10]
which can be viewed as the static, weak field limit of a modified gravity theory [11,12]. Among the
regularities it explains are [13]:

• The Baryonic Tully–Fisher Relation v4 = a0GM between the asymptotic rotational velocity v
and the baryonic mass M of some structure, where a0 ' 1.2× 10−10 m/s2 [14];

• Milgrom’s Law that dark matter always starts being necessary when the acceleration drops below
a0 [15];

• Freeman’s Law GΣ < a0 for the surface density Σ [16]; and
• Sancisi’s Law that features in luminous matter follow features in rotation curves and vice

versa [17].

Especially impressive is the recent work by McGaugh and collaborators on the universal
relation which seems to exist between the observed radial acceleration and that predicted using
only baryons [18,19]. This does not accord well with the idea that dark matter is five times more
prevalent than baryonic matter. With general relativity plus dark matter one has to wonder, why is the
baryonic matter tail wagging the dark matter dog?

The bottom line is that MOND provides too good a fit to evolved structures to be an accident.
Either general relativity with dark matter approaches MOND as some kind of hitherto unrecognized
attractor solution or else there is no dark matter and MOND represents the nonrelativistic, static
limit of some modified gravity theory. Either possibility is fascinating, and I do not think anyone can
honestly claim to know which is correct right now. Because I work in gravity, I have chosen to explore
the second possibility.

2.3. Fine Tuning Problems

I think fine tuning is the worst problem for dark energy, and for primordial inflation.
The usual explanation for both is general relativity with a minimally coupled scalar whose potential
drives acceleration,

L =
R
√−g

16πG
− 1

2
∂µ ϕ∂ν ϕgµν

√
−g−V(ϕ)

√
−g . (2)

There is no question that this sort of model can support the required expansion histories because
there is a closed form procedure for constructing the potential [1,20–24]. Suppose the desired geometry
takes the form,

ds2 = −dt2 + a2(t)d~x·d~x =⇒ H(t) ≡ ȧ
a

, ε(t) ≡ − Ḣ
H2 . (3)
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We assume the scalar depends only on time ϕ = ϕ0(t). The two nontrivial Einstein equations are,

3H2 = 8πG
[1

2
ϕ̇2

0 + V(ϕ0)
]

, (4)

−2Ḣ − 3H2 = 8πG
[1

2
ϕ̇2

0 −V(ϕ0)
]

. (5)

Adding Equations (4) and (5) gives an equation we can solve for the scalar, up to an initial
condition and a sign choice,

− 2Ḣ = 8πGϕ̇2
0 =⇒ ϕ0(t) = ϕ0(ti)±

∫ t

ti

ds

√
−2Ḣ(s)

8πG
. (6)

Assuming Ḣ(t) is negative-definite, we can invert this (at least numerically) to determine the
time as a function of the scalar τ(ϕ). Now subtract Equation (5) from Equation (4) and solve for
the potential,

V(ϕ) =
Ḣ(t)+3H2(t)

8πG

∣∣∣∣∣
t=τ(ϕ)

. (7)

The construction of Equations (3)–(7) leaves no doubt that scalar potential models (Equation (2))
can support any expansion history with Ḣ(t) < 0, but we are left wondering, who ordered that? More
quantitative questions abound:

• Why is ϕ(t,~x) ∼ ϕ0(t) so spatially homogeneous?
• Why is G2V(ϕ0) ∼ 10−122 so small?
• Why is no fifth force observed?

For primordial inflation, the degree of fine tuning needed to get inflation to start, and the tendency
to lose predictivity [25] has led to considerable angst within the community [26–28]. There is an
additional problem associated with the need to couple the inflation ϕ to ordinary matter to make
reheating efficient. On de Sitter background (ε = 0), the resulting cosmological Coleman–Weinberg
potentials turn out to depend in a complicated way on the dimensionless ratio of ϕ/H. These potentials
are not Planck-suppressed and they cannot be fine-tuned away because the factors of “H” are not even
local for a general metric [29]. This seems to have a disastrous effect on inflation [30].

I should mention that there are two reasonable alternatives to Equation (2) for primordial inflation
which avoid some of the fine-tuning problems. One of these models employs the Higgs as the inflation,
but with a huge conformal coupling [31]. The other is a modified gravity theory based on adding a
large R2 term to the Hilbert action [2].

3. Options for Modifying Gravity

Modified gravity theories can be classified based on the answers to three questions:

1. Is the gravitational force entirely carried by the metric or are other fields involved?
2. Is full general coordinate invariance preserved?
3. Are the field equations local or nonlocal?

In this section, I discuss metric-based modifications of gravity which preserve full general
coordinate invariance. An important theorem restricts local, stable theories of this type to just f (R)
models [1]. I begin by explaining why f (R) models cannot replace either dark energy or dark matter.
I then review the problems associated with fundamental nonlocality.

3.1. Problems with f (R) Models

I have already mentioned that an f (R) model can give primordial inflation [2]. The same is
not true for explaining the current phase of late time acceleration. The data tell us that the ΛCDM
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expansion history seems to be correct [32,33]; however, the only stable f (R) model which reproduces
the ΛCDM expansion history is f (R) = R− 2Λ [34]. This means that any f (R) model which replaces
dark energy is bound to show discrepancies with the data at 0th order, without even worrying
about perturbations.

To see the problem replacing dark matter, consider the physics of a static, spherically symmetric
and nearly flat geometry,

ds2 = −
[
1 + b(r)

]
dt2 +

[
1+a(r)

]
dr2 + r2dΩ2 . (8)

Suppose M(r) represents the mass enclosed within radius r. If this system is a low surface
brightness galaxy within the MOND regime for all r, then the baryonic Tully–Fisher relation says the
potential b(r) must obey [35],

v4(r) = a0GM(r) =
[1

2
rb′(r)

]2
. (9)

Because M(r) is an integral over the mass density ρ(r), we can recover what must be the weak
field, static limit of the MOND equation for b(r),

δS
δb(r)

=
1

32πa0G
∂r

[
rb′(r)

]2
− 1

2
r2ρ(r) = 0 . (10)

If we assume the a equation is obeyed, the small b expansion of the associated Lagrangian
would be,

L =
r2

16πG

{
− b′3

6a0
+ O(b4)

}
− 1

2
r2bρ . (11)

Neither Equation (10) nor (11) can have come from any f (R) model because the weak field
expansion of the Ricci scalar is,

R = −b′′ +
2(a′−b′)

r
+

2a
r2 . (12)

Note that the problem is fundamental, and has nothing to do with the weak field expansion.
Ricci scalars have two derivatives, or factors of 1/r, whereas the desired field equation (10),
has three derivatives.

3.2. Problems with Fundamental Nonlocality

I think it would be fair to say that Sir Isaac Newton disapproved of nonlocal equations of motion.
He denounced it as so [36],

great an Absurdity that I believe no Man who has in philosophical Matters a competent Faculty of
thinking can ever fall into it.

Now I know that some people at this conference, who do have a competent faculty of thinking,
support fundamental nonlocality. Without engaging in Newton’s vituperation, let me explain why I
share the great man’s doubts about the subject.

Ostrogradsky’s theorem states that nondegenerate higher derivative models have extra degrees of
freedom, essentially half of which carry negative kinetic energy [37]. When these sorts of theories have
interactions among continuum fields, they develop a crazy time dependence in which the positive
energy degrees of freedom become infinitely excited by infinitely exciting the negative energy ones.
Some nonlocal theories can avoid this, but not the type favored by people here, which is based on
entire functions of the derivative operator. An entire function is defined to converge to its Taylor series
expansion, so we know one can view the theories of interest as the limits of sequences of ever-higher
derivative models [38]. The theories in such a sequence become more unstable, not less, as the number
of higher derivatives increases. In the fully nonlocal limit, one can specify the dynamical variable
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arbitrarily within any finite coordinate range, adjusting the variable outside this range to make the
equation true. Assertions to the contrary are often based on working perturbatively in Euclidean
momentum space. This amounts to assuming away the problem because the wild time dependence
precludes the existence of temporal Fourier transforms in the first place.

People who claim to have solved the problem of extra, and unstable, initial value data sometimes
ask me for an example of a system on which they might apply it. As it happens, I spent the better part
of a year trying to come up with a good solution to the problem of using the scalar power spectrum of
primordial inflation to reconstruct the first slow roll parameter ε, regarded as a function of the number
of e-foldings n, for the case where there are features. A simplified version of this problem takes the
form of a linear integro-differential equation for ln[ε(n)] [39,40],[

1 + G(1)∂n

]
ln[ε(n)]−

∫ n

0
dm
[
∂2

m+3∂m

]
ln[ε(m)]×G(em−n) = f (n) , (13)

where the function G(x) is,

G(x) ≡ 1
2
(x+x3) sin

[ 2
x
−2arctan

( 1
x

)]
. (14)

We never did get a really satisfactory solution, precisely because of the Ostrogradskian instability.
Those of you who think this is no issue, please solve my problem and then we can talk.

Before closing, I should mention the claims of another faction of those who believe in fundamental
nonlocality, and also higher derivative theories. These people acknowledge the classical problem but
assert that it can be evaded by clever alternate quantizations. The details do not matter much because
all such claims suffer from the same problem of giving up the classical Correspondence Limit. Of course
that must be the case because the classical theory has negative energy field configurations, whereas
the spectrum of the alternate quantization does not. Physics is ultimately an experimental subject
and if someone advanced this idea for anything other than gravity I would agree to let experiment
decide the issue. However, the only low energy gravitational data we have, or ever will have, are from
classical general relativity. It is a bad bargain to throw that away in the search for something you call
“quantum gravity”.

4. Modified Gravity as Vacuum Polarization

In criticizing fundamental nonlocality, it might be thought that I have undercut the case I wish to
make. However, there is a completely acceptable type of nonlocality in the form of quantum corrections
to the effective field equations. I first discuss how loops of massless particles can give macroscopic
effects, even in flat space. Then, I discuss why primordial inflation might produce even stronger effects.
This is followed by a review of corrections to electromagnetism and to gravitation which become
nonperturbatively strong during a prolonged phase of primordial inflation. The section closes by
reviewing the proposal that such effects might provide a model for primordial inflation.

4.1. Macroscopic Nonlocality in Flat Space QED

We all know how electron–positron loops cause electrodynamic forces to become stronger at
short distances. Static corrections to the Coulomb potential Φ(r) of an electron are described by the
nonlocal equation,

−∇2

[
Φ(r) +

1
2π2r

∫ ∞

0
dk k sin(kr)χe(k)Φ̃(k)

]
= −eδ3(~r) . (15)
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Here, Φ̃(k) is the spatial Fourier transform of Φ(r) and χe(k) is the one loop contribution to the
electric susceptibility,

χe(k) = δχe +
4α

π

∫ 1

0
dx x(1−x)

{
ln(2Λ)−1− 1

2
ln
[
m2

e + x(1−x)k2
]}

, (16)

where Λ is the ultraviolet cutoff and δχe is the counterterm. As long as the electron mass me is nonzero,
we would choose δχe to make the susceptibility vanish at k = 0,

χe(0) = 0 =⇒ χe(k) = −
2α

π

∫ 1

0
dx x(1−x) ln

[
1 + x(1−x)

k2

m2
e

]
. (17)

Of course, this means that there is no correction to the classical result for large r, however, the small
r potential experiences a logarithmic enhancement,

r <∼
1

me
=⇒ Φ(r) = − e

4πr

[
1 +

2α

3π
ln
( 1

mer

)
+ . . .

]
. (18)

Now, suppose the electron mass vanished. In this case, we could no longer choose δχe to make
the susceptibility vanish at k = 0. We would instead choose some renormalization length scale R,

me = 0 =⇒ χe(k) = −
2α

π

∫ 1

0
dx x(1−x)

[
x(1−x)k2R2

]
. (19)

In this case, the potential shows logarithmic corrections for all r,

∀r =⇒ Φ(r) = − e
4πr

[
1 +

2α

3π
ln
(R

r

)
+ . . .

]
. (20)

At small r, Equation (20) exhibits the same enhancement as for a massive electron (Equation (18)).
However, for large radius, the potential is weakened, and the effect becomes nonperturbatively strong
for r � R. Because the effective coupling is weakened for large r, we can sum the sequence of leading
logarithms to obtain a nonperturbative result for the large r potential,

Φ(r) −→ − e
4πr
× 1√

1− 4α
3π ln( R

r )
. (21)

4.2. Inflationary Particle Production

Let us assume that inflation is driven by a minimally coupled scalar potential model (Equation (2)).
The most transparent gauge is that of Salopek, Bond and Bardeen [41], in which the temporal condition
sets ϕ(t,~x) = ϕ0(t) and the spatial conditions are the transversality of the graviton. In this gauge,
the metric components g0µ are constrained and the dynamical variables ζ(t,~x) and hij(t,~x) appear in
the spatial components,

gij(t,~x) = a2(t)e2ζ(t,~x)×
[
eh(t,~x)

]
ij

, hii(t,~x) = 0 . (22)

The quadratic part of the gauge fixed and constrained Lagrangian is,

L(2) = εa3

8πG

(
ζ̇2 − 1

a2
~∇ζ ·~∇ζ

)
+

a3

64πG

(
ḣij ḣij −

1
a2 hij,khij,k

)
. (23)
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Although the factors of a(t) and ε(t) in Equation (23) break time translation invariance, spatial
translation invariance is still present. This means that the scalar and the graviton fields can be
decomposed into spatial plane waves. The equation of motion, Wronskian and asymptotic early time
form for the scalar mode functions v(t, k) are,

v̈ +
(

3H+
ε̇

ε

)
v̇ +

k2v
a2 = 0 , vv̇∗ − v̇v∗ =

i
εa3 , v −→

exp[−ik
∫ t

ti
dt′

a(t′) ]√
2kε(t)a2(t)

. (24)

The tensor mode functions u(t, k) obey very similar relations,

ü + 3Hu̇ +
k2u
a2 = 0 , uu̇∗ − u̇u∗ =

i
a3 , u −→

exp[−ik
∫ t

ti
dt′

a(t′) ]√
2ka2(t)

. (25)

During inflation, a(t) grows nearly exponentially, whereas H(t) is almost constant. The result is
that modes which are originally sub-horizon with k > H(t)a(t) eventually experience first horizon
crossing at k = H(tk)a(tk). One can see from the mode equations (24) and (25) that the k2/a2 terms
become irrelevant after horizon crossing, which causes v(t, k) and u(t, k) to approach constants with
deviations falling off as k2/a2. These constants determine the scalar and tensor power spectra,

∆2
R(k) = 4πG× k3

2π2×
∣∣∣v(t, k)

∣∣∣2
t�tk

, ∆2
h(k) = 32πG× k3

2π2×2×
∣∣∣u(t, k)

∣∣∣2
t�tk

. (26)

The spatial translation invariance of Equation (23) means that spatially Fourier transformed fields
with wave vector~k behave as independent harmonic oscillators. However, the associated masses and
frequencies are time dependent,

ζ =⇒ m(t) ∼ ε(t)a3(t) , ω(t, k) =
k

a(t)
, (27)

hij =⇒ m(t) ∼ a3(t) , ω(t, k) =
k

a(t)
. (28)

The fact that spatial plane waves are independent harmonic oscillators means that the
spectrum of energies at any instant of time is (N + 1

2 )h̄ω(t, k). However, the time dependence of
Equations (27) and (28) means that the energy eigenstates at one time do not remain eigenstates.
The usual “vacuum” state is the one which was minimum energy (N = 0) in the distant past.
The expectation value of the scalar and tensor energies at later times take the forms,

〈
Ω
∣∣∣Eζ(t, k)

∣∣∣Ω〉 =
1
2

ε(t)a3(t)
[
|v̇(t, k)|2 + k2

a2(t)
|v(t, k)|2

]
, (29)

−→ k
a(t)
×

π∆2
R(k)

4Gk2 ×ε(t)a2(t) , (30)〈
Ω
∣∣∣Eh(t, k)

∣∣∣Ω〉 =
1
2

a3(t)
[
|u̇(t, k)|2 + k2

a2(t)
|u(t, k)|2

]
, (31)

−→ k
a(t)
×

π∆2
h(k)

64Gk2 ×a2(t) . (32)

If we define occupation numbers based on these energies being ( 1
2 + N)h̄ω, the numbers of

inflationary scalars and gravitons with a single super-horizon wave vector~k are,

Nζ(t, k) =
π∆2
R(k)

4Gk2 × ε(t)a2(t) , Nh(t, k) =
π∆2

h(k)
32Gk2 × a2(t) . (33)
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Of course, there are many wave vectors so the amount of inflationary particle production is
truly staggering.

4.3. Corrections to EM and GR During Inflation

The best way of understanding quantum loop effects is through the action of classical physics on
virtual particles. In view of the vast numbers (Equation (33)) of scalars and gravitons produced out of
vacuum, it seems inevitable that quantum effects are strengthened during inflation. By solving the
linearized effective field equations, we can see how inflationary scalars and gravitons modify particle
kinematics and long range forces.

One studies how inflation affects electromagnetism by computing graviton and scalar
contributions to the vacuum polarization i[µΠν](x; x′) and then using this to quantum-correct
Maxwell’s equations,

∂ν

[√
−g gνρgµσFρσ(x)

]
+
∫

d4x′
[

µΠν
]
(x; x′)Aν(x′) = Jµ(x) . (34)

The one loop graviton contribution to i[µΠν](x; x′) was computed on de Sitter background [42]
using the simplest gauge [43,44]. The result was employed to show that the electric fields of plane
wave photons experience a secular enhancement [45],

F1loop
0i (t, k) −→ 1

π
GH2 ln(a)× Ftree

0i (t, k) . (35)

Equation (34) also implies that the response to a point charge experiences a logarithmic
running [46],

Φ(t, r) =
Q

4πar

{
1 +

G
3πa2r2 +

1
π

GH2 ln(aHr) + O(G2)

}
. (36)

Note that both of these effects become nonperturbatively strong at late times and, in the case
of Equation (36), at large r.

Quantum corrections to the linearized Einstein equation come from the graviton self-energy
−i[µνΣρσ](x; x′),

√
−gLµνρσhρσ(x)−

∫
d4x′

[
µνΣρσ

]
(x; x′)hρσ(x′) = 8πGTµν(x) , (37)

where Lµνρσ is the Lichnerowicz operator in the appropriate background. The graviton self-energy
was early computed in the simple gauge [47]. However, this result was not dimensionally regulated
and fully renormalized, so it cannot be used in Equation (37). The equation was solved in the Hartree
approximation to show that the electric curvature components of plane wave gravitons experience a
secular de-enhancement [48],

C1loop
0i0j (t, k) −→ − 8

π
GH2 ln(a)× Ctree

0i0j (t, k) . (38)

The contribution to−i[µνΣρσ](x; x′) from massless, minimally coupled scalars has been computed
using dimensional regularization and fully renormalized [49]. This result shows no corrections to
dynamical gravitons [50] but it does lead to a logarithmic decrease—in time and space—in the response
to a point mass [51],

Ψ(t, r) = −GM
ar

{
1 +

G
20πa2r2 −

GH2

10π

[1
3

ln(a) + 3 ln(aHr)
]
+ O(G2)

}
. (39)
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Similar to their electromagnetic counterparts, perturbation theory breaks down for Equations (38)
and (39).

4.4. Λ-Driven Inflation

We have just seen that quanta produced during inflation interact with external particles. It is
obvious they must also interact with themselves. Because gravity is attractive, one might expect that
they attract one another and that this mutual attraction should act as a sort of friction, slowing down
the expansion rate. In line with the factors of ln(a) seen in Equations (35)–(39) one might expect
that this friction grows with time as more and more of the newly produced quanta come into causal
contact with one another. In addition, in line with Equations (35)–(39), we might expect that the secular
slowing eventually becomes nonperturbatively strong.

No one knows what happens beyond perturbation theory but if we assume that secular slowing
can eventually stop inflation, it becomes possible to imagine dispensing with the scalar altogether and
driving inflation with a large, positive cosmological constant which is gradually screened by the build
up of gravitational self-interaction between inflationary gravitons [52,53]. Such a model would solve
many of the fine tuning problems associated with getting inflation to start, and to last long enough,
and it would incidentally resolve the old problem of the cosmological constant [54,55]. It would also
provide a unique model of inflation which made testable predictions—if only a way could be found to
compute in the nonpertubative regime, as we did for massless QED in Equation (21).

5. Answers to My Critics

These effects in Equations (35)–(39) are astonishing, and the fact that they grow nonperturbatively
strong is pregnant with possibilities for late time modifications of gravity. None of these results was
easy to obtain. Some of the computations required the better part of a year’s dedicated labor by me
and/or collaborators. Thus, it is disheartening to watch our work facilely dismissed. For example,
three of us attended the 12-week KITP program Quantum Gravity Foundations: UV to IR in 2015.
Infrared quantum gravitational effects during primordial inflation is a subject on which we have
a fair claim to being world experts—but the world is not interested. Shun-Pei Miao was allotted
five minutes to summarize her year-long computation showing that inflationary gravitons excite
fermions by an amount which eventually becomes nonperturbatively large [56,57]. Tomislav Prokopec
was given ten minutes to review his one- and two-loop work on scalar quantum electrodynamics
during inflation [58–60]. In this section, I discuss four of the reasons which my critics give for their
sublime indifference.

5.1. “Your Effects are Gauge Dependent”

First, this objection does not apply to the screening of gravity (Equation (39)) caused by
loops of massless, minimally coupled scalars [49,51]. Gauge dependence requires that a graviton
propagator enter the loop, and none does in that case. However, the effect on the Newtonian
potential (Equation (39)) shows the same fractional correction of GH2 ln(aHr) that gravitons make to
the Coulomb potential in Equations (36). I have already invoked Coleridge’s famous comment on the
willing suspension of disbelief, which surely applies to dismissing Equation (36) as a gauge artifact
while (grudgingly) admitting the reality of Equation (39). A second, but closely related point concerns
the fractional corrections of G/a2r2 which are visible in both Equations (36) and (39). These are nothing
but the de Sitter descendants, with r → a(t)r, of flat space corrections which were computed long
ago [61].

My third comment concerns the physics of kinematical changes in photons (Equation (35)) and
gravitons (Equation (38)). Without regard to the details of the computations, the vast numbers of
particles produced during inflation must scatter external photons and gravitons to some extent. This is
not some sort of gauge chimera; in flat space background, it is the basis of the proposal to use pulsar
arrival times to detect gravitational radiation [62]. The eventual breakdown of perturbation theory
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evident in Equations (35) and (38) has a very simple origin: the longer an external photon or graviton
propagates the more it should be affected. The numerical coefficients might be suspect, but the general
trend must occur.

Of course computational details do matter because we want gauge independent results for the
numerical coefficients. My fourth comment is that years of study have paid off in providing both
a physical explanation for why the effective field equations are gauge dependent and a procedure
for eliminating this gauge dependence [63]. Gauge dependence arises because some physical source
disturbs the effective field, and some physical observer measures the disturbance. The source and
observer interact with quantum gravity, as does everything, and we have not described a physical
process unless we include this interaction. As might be expected, few of the source and observer
details matter much. For example, it does not matter that the observer had blue eyes or brown.

Miao, Prokopec (who were granted 15 min at a 12-week program!) and I worked out an explicit
example in flat space background concerning the one graviton loop correction to the exchange
potential of a massless, minimally coupled scalar in the two-parameter family of covariant gauge fixing
functions [63],

LGF = − 1
2a

ηµνFµFν , Fµ = ηρσ
(

hµρ,σ −
b
2

hρσ,µ

)
. (40)

The linearized effective field equation can be expressed in terms of a self-mass-squared M2(x; x′),

∂2 ϕ(x)−
∫

d4x′ M2(x; x′)ϕ(x′) = J(x) . (41)

Ignoring the source and observer, our result for M2(x; x′) in the gauge of Equation (40) takes the
form of a gauge dependent constant times a function of spacetime whose form is fixed by Poincaré
invariance and dimensionality,

−iM2(x; x′) = C0(a, b)× G∂6

4π3

[
ln(µ2∆x2)

∆x2

]
, ∆x2 ≡ (x−x′)2 , (42)

C0(a, b) = +
3
4
− 3

4
× a− 3

2
× 1

b−2
+

3
4
× (a−3)

(b−2)2 . (43)

The fact that C0(a, b) can be made to vary from −∞ to +∞ would provide my critics justification
to condemn the whole exercise as nonsense. However, they would be wrong! By including quantum
gravitational correlations from the source and observer one gets additional contributions having
the same spacetime dependence as Equation (42) but with different gauge dependent coefficients.
Table 1 summarizes the results and demonstrates the satisfying cancellation of all dependence on the
parameters a and b [63]. Steven Weinberg relates how post-renormalization physicists used to quip,
“just because something diverges doesn’t mean it’s zero”. In the same vein, I hope people will now
admit, “just because something depends on the gauge doesn’t mean it’s zero!”.

Table 1. The gauge dependent factors Ci(a, b) for each contribution to the self-mass-squared.

i 1 a 1
b−2

(a−3)
(b−2)2 Description

0 + 3
4 − 3

4 − 3
2 + 3

4 scalar exchange

1 0 0 0 +1 vertex-vertex

2 0 0 0 0 vertex-source,observer

3 0 0 +3 −2 vertex-scalar

4 + 17
4 − 3

4 0 − 1
4 source-observer

5 −2 + 3
2 − 3

2 + 1
2 scalar-source,observer

Total +3 0 0 0
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Resolving the gauge problem for effective field equations is not enough. The correct generalization
of the power spectrum is still unclear [64] but the answer may be gauge invariant correlators. There is
interesting recent work on these by Markus Fröb and collaborators [65–67]. An invariant measure of
the local expansion rate has also been proposed [68], and its one-loop renormalization on de Sitter
background has been accomplished [69].

5.2. “IR Gravitons Have Small Curvature”

Each graviton mode has a constant wave vector~k, whose physical wave number k/a(t) redshifts
as the universe expands. During a sufficiently long epoch of inflation, the physical wave number
eventually falls below the almost constant Hubble parameter H(t), an event which is known as first
horizon crossing. After inflation, the product a(t)H(t) falls off, so modes can experience a second
horizon crossing. Some of my critics appear to believe that only sub-horizon gravitons are physical,
so that inflationary gravitons literally pass out of existence between first and second crossings. This is
nonsense. The curvatures of super-horizon gravitons become small exponentially fast, but they never
touch zero, and the exponentially growing numbers of super-horizon gravitons (Equation (33)) can
compensate small individual curvatures.

Another point of great relevance is that the curvatures of inflationary gravitons are not always
small; they start out large and then redshift. General relativity on asymptotically flat space has a
well-known nonlinear memory effect [70] in which the passage of a gravitational wave leaves a permanent
displacement in test observers. After the wave has passed, the observers’ curvature is zero, yet the
passage of the wave had an effect. How can it be argued that the continual redshift of gravitons from
the ultraviolet to the infrared during inflation can have no effect?

I seem to be re-contesting the same battles which were fought last century over the fact that
charged quantum particles couple to the undifferentiated vector potential, not the field strength.
There never was any doubt about this, but stubborn physicists for years resisted the obvious
conclusion that constant vector potentials could, under certain circumstances, engender physical
effects. However, nature pays no attention to human prejudices and an experiment was eventually
proposed [71,72] whose result [73] is taught in undergraduate quantum mechanics. In the same sense,
matter, and gravity itself, couple to the undifferentiated metric, not to the curvature. Hence, there must
be cases in which physical effects can occur even for zero curvature.

Finally, one must distinguish between infrared divergences and infrared effects such as secular
growth (Equation (35)) and logarithmic running (Equation (36)). Infrared divergences derive from
infinite numbers of gravitons being super-horizon at the start of inflation. A compelling case has
been made that these would be subsumed into the background of any local observer and have no
effect [74]. On the other hand, infrared effects are caused by gravitons which were initially sub-horizon
and experienced first horizon crossing during inflation. It is not legitimate to regard these are having
always been part of the background. Of course, it might still have been correct, as my critics insisted.
I am a big believer in checking things when I can figure out how to do it. When I finally figured
out how to check this belief, the result is that subsuming infrared gravitons into the background can
neither eliminate secular growth [75] nor changes in the local expansion rate [76].

5.3. “Your Effects Are Not Observable”

Some claim that the cosmological horizon precludes local observers from perceiving effects
such as Equations (35)–(39) during inflation. To see how a local observer could perceive the secular
enhancement of photons (Equation (35)) consider setting off a flash between reflecting mirrors at
fixed, sub-horizon physical distances from one another, and monitoring the field strength as the signal
reflects back and forth. The logarithmic running of Equation (36) could be observed using one neutral
and two charged particles. Release the two charges at rest from one another, with the neutral particle
also released from rest, next to one of the charges. Then, even after the two charges are no longer in
causal contact, the effect of their mutual attraction could be followed by measuring the separation
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of the nearby charge from the neutral particle. These sorts of experiments could at least be done for
a while.

Other critics claim that Equations (35)-(39) can have no effect now. These people leave me
wondering what part of the phrase “nonperturbatively strong” they do not understand. The burden
of my message is that modifications to gravity now might derive from interactions between the
vast numbers (Equation (33)) of scalars and gravitons produced during inflation. The effects of
Equations (35)–(39) all grow to eventually become nonperturbatively strong during a prolonged period
of inflation. The fact that I cannot yet sum up the series of large logarithms to exhibit their late time
limits is no reason for claiming that those limits are unobservable.

5.4. “Your Calculations Are Difficult”

No one enjoys being attacked, but I have tried very hard to understand my critics and to honestly
address their concerns. In a well-known case, I publicly renounced a previous opinion [77] based on
this sort of engagement [78]. However, whining about the complexity of perturbative quantum gravity
on de Sitter background is not a serious objection, although it is sadly frequent, and I can only urge
this class of critics to grow up!

6. Conclusions

This article has been devoted to making the case for nonlocal modifications of gravity. In these
concluding remarks, I briefly review some of the models I have explored. I apologize to the many
others whose work on such nonlocal models I do not discuss [79–117].

As I have explained, nonlocal modifications of gravity can come from quantum loop effects that
grew nonperturbatively strong during primordial inflation. Although one can follow some of these effects
while they are still small, there is not yet any way to compute past the breakdown of perturbation theory,
as we were able to do for the Coulomb potential in Equation (21) of massless QED in flat space. However,
the putative inflationary origin does explain two things that would otherwise seem unnatural:

• There is an initial value surface upon which the initial conditions of inverse differential operators
can be defined.

• Modifications of gravity are expected on large distances, not small ones.

We seek to guess the most cosmologically significant part of the gravitational effective action.
What happens perturbatively should serve as a guide. One can see from Equations (35)–(39) that
secular growth on de Sitter background resides in factors of ln[a(t)]. A simple nonlocal scalar which
reproduces this is [118],

1
R
∣∣∣
dS
−→ −4 ln[a(t)] , (44)

where ≡ 1√−g ∂µ(
√−g gµν∂ν) is the scalar d‘Alembertian. Thus, it might be reasonable to expect that

modifications involve an algebraic function f ( 1 R). Models of this type have been proposed to study
Λ-driven inflation [20,119], metric realizations of MOND [120], and late time acceleration [121–123].
Although this simple ansatz is not satisfactory for MOND [124], it does describe an interesting model
for ending primordial inflation, generating density perturbations and then reheating to go quiescent
into the epoch of radiation domination [125]. With some elaborations, it might even describe late
time acceleration [126–128]. The simple ansatz also offers many advantages in describing late time
acceleration because:

• Unlike R −→ f (R) models, theories involving R −→ R f ( 1 R) can be chosen to exactly reproduce
the ΛCDM expansion history [129].

• Because 1 R is negative for cosmology and positive for gravitationally bound systems, it is trivial

to choose the function f ( 1 R) to avoid solar system constraints.
• The scalar 1 R is dimensionless so it requires no small mass.
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• During radiation domination R = 0, so the onset of modifications is postponed until late in
cosmological history.

• Even after matter domination, the scalar 1 R only grows logarithmically with time, postponing
the onset to even later times.

• Perturbing the model to study structure formation [130–132] actually agrees better with the data
than general relativity [133,134].

A more elaborate nonlocal model involving an algebraic function of a different scalar has been
devised to reproduce MOND pheneomenology for gravitationally bound systems [35]. Because this is a
complete, metric theory of gravity, it can be applied to cosmology similar to general relativity [135,136].
The algebraic function can be chosen to reproduce most of the ΛCDM expansion history, and even offers
a serendipitous explanation for the tension between low redshift and high redshift determinations
of the Hubble constant [137]. However, perturbations about the cosmological background do not
correctly describe structure formation [138]. I suspect that the problem can be resolved by making the
numerical coincidence cH0 ' 2πa0 dynamical.
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32. Abbott, T.M.C.; Abdalla, F.B.; Alarcon, A.; Aleksić, J.; Allam, S.; Allen, S.; Amara, A.; Annis, J.; Asorey, J.;

Avila, S.; et al. Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and
Weak Lensing. arXiv 2017, arXiv:1708.01530.

33. Troxel, M.A.; MacCrann, N.; Zuntz, J.; Eifler, T.F.; Krause, E.; Dodelson, S.; Gruen, D.; Blazek, J.; Friedrich, O.;
Samuroff, S.; et al. Dark Energy Survey Year 1 Results: Cosmological Constraints from Cosmic Shear. arXiv
2017, arXiv:1708.01538.

34. Dunsby, P.K.S.; Elizalde, E.; Goswami, R.; Odintsov, S.; Gomez, D.S. On the LCDM Universe in f(R) gravity.
Phys. Rev. D 2010, 82, 023519. [CrossRef]

35. Deffayet, C.; Esposito-Farese, G.; Woodard, R.P. Nonlocal metric formulations of MOND with sufficient
lensing. Phys. Rev. D 2011, 84, 124054. [CrossRef]

36. Newton, I. Four Letters from Sir Isaac Newton to Doctor Bentley; Dodsley, J., Ed.; Pall-Mall: London, UK, 1756.
37. Woodard, R.P. Ostrogradsky’s theorem on Hamiltonian instability. Scholarpedia 2015, 10, 32243. [CrossRef]
38. Eliezer, D.A.; Woodard, R.P. The Problem of Nonlocality in String Theory. Nucl. Phys. B 1989, 325, 389–469.

[CrossRef]
39. Brooker, D.J.; Tsamis, N.C.; Woodard, R.P. Analytic approximation for the primordial spectra of single scalar

potential models and its use in their reconstruction. Phys. Rev. D 2017, 96, 103531. [CrossRef]
40. Brooker, D.J.; Tsamis, N.C.; Woodard, R.P. From Non-trivial Geometries to Power Spectra and Vice Versa.

J. Cosmol. Astropart. Phys. 2018, 1804, 3. [CrossRef]
41. Salopek, D.S.; Bond, J.R.; Bardeen, J.M. Designing Density Fluctuation Spectra in Inflation. Phys. Rev. D 1989,

40, 1753–1788. [CrossRef]
42. Leonard, K.E.; Woodard, R.P. Graviton Corrections to Vacuum Polarization during Inflation. Class. Quant. Grav.

2014, 31, 015010. [CrossRef]

http://dx.doi.org/10.1086/340578
http://dx.doi.org/10.1086/150474
http://dx.doi.org/10.1017/S0074180900183299
http://dx.doi.org/10.1103/PhysRevLett.117.201101
http://www.ncbi.nlm.nih.gov/pubmed/27886485
http://dx.doi.org/10.3847/1538-4357/836/2/152
http://dx.doi.org/10.1006/aphy.1998.5816
http://dx.doi.org/10.1103/PhysRevLett.85.1162
http://www.ncbi.nlm.nih.gov/pubmed/10991502
http://dx.doi.org/10.1103/PhysRevD.66.021301
http://dx.doi.org/10.1007/s10714-006-0301-6
http://dx.doi.org/10.1142/S0217732307022839
http://dx.doi.org/10.1016/j.physletb.2013.05.023
http://dx.doi.org/10.1016/j.physletb.2014.03.020
http://dx.doi.org/10.1016/j.physletb.2014.07.012
http://dx.doi.org/10.1088/1475-7516/2015/9/022
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://dx.doi.org/10.1103/PhysRevD.82.023519
http://dx.doi.org/10.1103/PhysRevD.84.124054
http://dx.doi.org/10.4249/scholarpedia.32243
http://dx.doi.org/10.1016/0550-3213(89)90461-6
http://dx.doi.org/10.1103/PhysRevD.96.103531
http://dx.doi.org/10.1088/1475-7516/2018/04/003
http://dx.doi.org/10.1103/PhysRevD.40.1753
http://dx.doi.org/10.1088/0264-9381/31/1/015010


Universe 2018, 4, 88 15 of 18

43. Tsamis, N.C.; Woodard, R.P. The Structure of perturbative quantum gravity on a De Sitter background.
Commun. Math. Phys. 1994, 162, 217–248. [CrossRef]

44. Woodard, R.P. De Sitter Breaking in Field Theory. In Deserfest: A Celebration of the Life and Works of Stanley
Deser; Liu, J.T., Duff, M.J., Stelle, K.S., Woodard, R.P., Eds.; World Scientific: Hackensack, NJ, USA, 2006;
pp. 339–351. [CrossRef]

45. Wang, C.L.; Woodard, R.P. Excitation of Photons by Inflationary Gravitons. Phys. Rev. D 2015, 91, 124054.
[CrossRef]

46. Glavan, D.; Miao, S.P.; Prokopec, T.; Woodard, R.P. Electrodynamic Effects of Inflationary Gravitons.
Class. Quant. Grav. 2014, 31, 175002. [CrossRef]

47. Tsamis, N.C.; Woodard, R.P. One loop graviton selfenergy in a locally de Sitter background. Phys. Rev. D
1996, 54, 2621–2639. [CrossRef]

48. Mora, P.J.; Tsamis, N.C.; Woodard, R.P. Hartree approximation to the one loop quantum gravitationalcorrection
to the graviton mode function on de Sitter. J. Cosmol. Astropart. Phys. 2013, 1310, 018. [CrossRef]

49. Park, S.; Woodard, R.P. Scalar Contribution to the Graviton Self-Energy during Inflation. Phys. Rev. D 2011,
83, 084049. [CrossRef]

50. Park, S.; Woodard, R.P. Inflationary Scalars Don’t Affect Gravitons at One Loop. Phys. Rev. D 2011, 84, 124058.
[CrossRef]

51. Park, S.; Prokopec, T.; Woodard, R.P. Quantum Scalar Corrections to the Gravitational Potentials on de Sitter
Background. J. High Energy Phys. 2016, 1601, 074. [CrossRef]

52. Tsamis, N.C.; Woodard, R.P. Quantum gravity slows inflation. Nucl. Phys. B 1996, 474, 235–248. [CrossRef]
53. Tsamis, N.C.; Woodard, R.P. A Gravitational Mechanism for Cosmological Screening. Int. J. Mod. Phys. D

2011, 20, 2847–2851. [CrossRef]
54. Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [CrossRef]
55. Carroll, S.M. The Cosmological constant. Living Rev. Rel. 2001, 4, 1. [CrossRef] [PubMed]
56. Miao, S.P.; Woodard, R.P. The Fermion self-energy during inflation. Class. Quant. Grav. 2006, 23, 1721–1761.

[CrossRef]
57. Miao, S.P.; Woodard, R.P. Gravitons Enhance Fermions during Inflation. Phys. Rev. D 2006, 74, 024021.

[CrossRef]
58. Prokopec, T.; Tornkvist, O.; Woodard, R.P. One loop vacuum polarization in a locally de Sitter background.

Ann. Phys. 2003, 303, 251–274. [CrossRef]
59. Prokopec, T.; Tsamis, N.C.; Woodard, R.P. Two Loop Scalar Bilinears for Inflationary SQED. Class. Quant. Grav.

2007, 24, 201–230. [CrossRef]
60. Prokopec, T.; Tsamis, N.C.; Woodard, R.P. Two loop stress-energy tensor for inflationary scalar

electrodynamics. Phys. Rev. D 2008, 78, 043523. [CrossRef]
61. Radkowski, A.F. Some Aspects of the Source Description of Gravitation. Ann. Phys. 1970, 56, 319. [CrossRef]
62. Detweiler, S.L. Pulsar timing measurements and the search for gravitational waves. Astrophys. J. 1979, 234,

1100–1104. [CrossRef]
63. Miao, S.P.; Prokopec, T.; Woodard, R.P. Deducing Cosmological Observables from the S-matrix. Phys. Rev. D

2017, 96, 104029. [CrossRef]
64. Miao, S.P.; Park, S. Alternate Definitions of Loop Corrections to the Primordial Power Spectra. Phys. Rev. D

2014, 89, 064053. [CrossRef]
65. Fröb, M.B. Gauge-invariant quantum gravitational corrections to correlation functions. Class. Quant. Grav.

2018, 35, 055006. [CrossRef]
66. Fröb, M.B.; Lima, W.C.C. Propagators for gauge-invariant observables in cosmology. Class. Quant. Grav. 2018,

35, 095010. [CrossRef]
67. Fröb, M.B.; Hack, T.P.; Khavkine, I. Approaches to linear local gauge-invariant observables in inflationary

cosmologies. Class. Quant. Grav. 2018, 35, 115002. [CrossRef]
68. Tsamis, N.C.; Woodard, R.P. Pure Gravitational Back-Reaction Observables. Phys. Rev. D 2013, 88, 044040.

[CrossRef]
69. Miao, S.P.; Tsamis, N.C.; Woodard, R.P. Invariant measure of the one-loop quantum gravitational backreaction

on inflation. Phys. Rev. D 2017, 95, 125008. [CrossRef]
70. Christodoulou, D. Nonlinear nature of gravitation and gravitational wave experiments. Phys. Rev. Lett. 1991,

67, 1486–1489. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/BF02102015
http://dx.doi.org/10.1142/9789812774804_0024
http://dx.doi.org/10.1103/PhysRevD.91.124054
http://dx.doi.org/10.1088/0264-9381/31/17/175002
http://dx.doi.org/10.1103/PhysRevD.54.2621
http://dx.doi.org/10.1088/1475-7516/2013/10/018
http://dx.doi.org/10.1103/PhysRevD.83.084049
http://dx.doi.org/10.1103/PhysRevD.84.124058
http://dx.doi.org/10.1007/JHEP01(2016)074
http://dx.doi.org/10.1016/0550-3213(96)00246-5
http://dx.doi.org/10.1142/S0218271811020652
http://dx.doi.org/10.1103/RevModPhys.61.1
http://dx.doi.org/10.12942/lrr-2001-1
http://www.ncbi.nlm.nih.gov/pubmed/28179856
http://dx.doi.org/10.1088/0264-9381/23/5/016
http://dx.doi.org/10.1103/PhysRevD.74.024021
http://dx.doi.org/10.1016/S0003-4916(03)00004-6
http://dx.doi.org/10.1088/0264-9381/24/1/011
http://dx.doi.org/10.1103/PhysRevD.78.043523
http://dx.doi.org/10.1016/0003-4916(70)90021-7
http://dx.doi.org/10.1086/157593
http://dx.doi.org/10.1103/PhysRevD.96.104029
http://dx.doi.org/10.1103/PhysRevD.89.064053
http://dx.doi.org/10.1088/1361-6382/aaa74c
http://dx.doi.org/10.1088/1361-6382/aab427
http://dx.doi.org/10.1088/1361-6382/aabcb7
http://dx.doi.org/10.1103/PhysRevD.88.044040
http://dx.doi.org/10.1103/PhysRevD.95.125008
http://dx.doi.org/10.1103/PhysRevLett.67.1486
http://www.ncbi.nlm.nih.gov/pubmed/10044168


Universe 2018, 4, 88 16 of 18

71. Ehrenberg, W.; Siday, R.E. The Refractive Index in Electron Optics and the Principles of Dynamics.
Proc. Phys. Soc. 1949, B62, 8–21. [CrossRef]

72. Aharonov, Y.; Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 1959, 115,
485–491. [CrossRef]

73. Chambers, R.G. Shift of an Electron Interference Pattern by Enclosed Magnetic Flux. Phys. Rev. Lett. 1960, 5,
3–5. [CrossRef]

74. Giddings, S.B.; Sloth, M.S. Cosmological observables, IR growth of fluctuations, and scale-dependent
anisotropies. Phys. Rev. D 2011, 84, 063528. [CrossRef]

75. Basu, S.; Woodard, R.P. Testing an Ansatz for the Leading Secular Loop Corrections from Quantum Gravity
during Inflation. Class. Quant. Grav. 2016, 33, 205007. [CrossRef]

76. Basu, S.; Tsamis, N.C.; Woodard, R.P. Causality Implies Inflationary Back-Reaction. J. High Energy Phys. 2017,
1707, 037. [CrossRef]

77. Abramo, L.R.W.; Woodard, R.P. One loop back reaction on chaotic inflation. Phys. Rev. D 1999, 60, 044010.
[CrossRef]

78. Abramo, L.R.; Woodard, R.P. No one loop back reaction in chaotic inflation. Phys. Rev. D 2002, 65, 063515.
[CrossRef]

79. Parker, L.; Toms, D.J. Renormalization Group and Nonlocal Terms in the Curved Space-time Effective Action:
Weak Field Results. Phys. Rev. D 1985, 32, 1409–1420. [CrossRef]

80. Banks, T. Prolegomena to a Theory of Bifurcating Universes: A Nonlocal Solution to the Cosmological
Constant Problem Or Little Lambda Goes Back to the Future. Nucl. Phys. B 1988, 309, 493–512. [CrossRef]

81. Wetterich, C. Effective nonlocal Euclidean gravity. Gen. Rel. Grav. 1998, 30, 159–172. [CrossRef]
82. Barvinsky, A.O. Nonlocal action for long distance modifications of gravity theory. Phys. Lett. B 2003, 572,

109–116. [CrossRef]
83. Espriu, D.; Multamaki, T.; Vagenas, E.C. Cosmological significance of one-loop effective gravity. Phys. Lett. B

2005, 628, 197–205. [CrossRef]
84. Hamber, H.W.; Williams, R.M. Nonlocal effective gravitational field equations and the running of Newton’s

G. Phys. Rev. D 2005, 72, 044026. [CrossRef]
85. Biswas, T.; Mazumdar, A.; Siegel, W. Bouncing universes in string-inspired gravity. J. Cosmol. Astropart. Phys.

2006, 3, 9. [CrossRef]
86. Nacir, D.L.; Mazzitelli, F.D. Running of Newton’s constant and non integer powers of the d’Alembertian.

Phys. Rev. D 2007, 75, 024003. [CrossRef]
87. Khoury, J. Fading gravity and self-inflation. Phys. Rev. D 2007, 76, 123513. [CrossRef]
88. Capozziello, S.; Elizalde, E.; Nojiri, S.; Odintsov, S.D. Accelerating cosmologies from non-local

higher-derivative gravity. Phys. Lett. B 2009, 671, 193–198. [CrossRef]
89. Biswas, T.; Koivisto, T.; Mazumdar, A. Towards a resolution of the cosmological singularity in non-local

higher derivative theories of gravity. J. Cosmol. Astropart. Phys. 2010, 1011, 8. [CrossRef]
90. Zhang, Y.L.; Sasaki, M. Screening of cosmological constant in non-local cosmology. Int. J. Mod. Phys. D 2012,

21, 1250006. [CrossRef]
91. Barvinsky, A.O. Dark energy and dark matter from nonlocal ghost-free gravity theory. Phys. Lett. B 2012, 710,

12–16. [CrossRef]
92. Barvinsky, A.O. Serendipitous discoveries in nonlocal gravity theory. Phys. Rev. D 2012, 85, 104018. [CrossRef]
93. Elizalde, E.; Pozdeeva, E.O.; Vernov, S.Y. De Sitter Universe in Non-local Gravity. Phys. Rev. D 2012, 85, 044002.

[CrossRef]
94. Barvinsky, A.O.; Gusev, Y.V. New representation of the nonlocal ghost-free gravity theory. Phys. Part. Nucl.

2013, 44, 213–219. [CrossRef]
95. Biswas, T.; Conroy, A.; Koshelev, A.S.; Mazumdar, A. Generalized ghost-free quadratic curvature gravity.

Class. Quant. Grav. 2014, 31, 015022; Erratum in 2014, 31, 159501. [CrossRef]
96. Foffa, S.; Maggiore, M.; Mitsou, E. Apparent ghosts and spurious degrees of freedom in non-local theories.

Phys. Lett. B 2014, 733, 76–83. [CrossRef]
97. Foffa, S.; Maggiore, M.; Mitsou, E. Cosmological dynamics and dark energy from nonlocal infrared

modifications of gravity. Int. J. Mod. Phys. A 2014, 29, 1450116. [CrossRef]
98. Rahvar, S.; Mashhoon, B. Observational Tests of Nonlocal Gravity: Galaxy Rotation Curves and Clusters of

Galaxies. Phys. Rev. D 2014, 89, 104011. [CrossRef]

http://dx.doi.org/10.1088/0370-1301/62/1/303
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRevLett.5.3
http://dx.doi.org/10.1103/PhysRevD.84.063528
http://dx.doi.org/10.1088/0264-9381/33/20/205007
http://dx.doi.org/10.1007/JHEP07(2017)037
http://dx.doi.org/10.1103/PhysRevD.60.044010
http://dx.doi.org/10.1103/PhysRevD.65.063515
http://dx.doi.org/10.1103/PhysRevD.32.1409
http://dx.doi.org/10.1016/0550-3213(88)90455-5
http://dx.doi.org/10.1023/A:1018837319976
http://dx.doi.org/10.1016/j.physletb.2003.08.055
http://dx.doi.org/10.1016/j.physletb.2005.09.033
http://dx.doi.org/10.1103/PhysRevD.72.044026
http://dx.doi.org/10.1088/1475-7516/2006/03/009
http://dx.doi.org/10.1103/PhysRevD.75.024003
http://dx.doi.org/10.1103/PhysRevD.76.123513
http://dx.doi.org/10.1016/j.physletb.2008.11.060
http://dx.doi.org/10.1088/1475-7516/2010/11/008
http://dx.doi.org/10.1142/S021827181250006X
http://dx.doi.org/10.1016/j.physletb.2012.02.075
http://dx.doi.org/10.1103/PhysRevD.85.104018
http://dx.doi.org/10.1103/PhysRevD.85.044002
http://dx.doi.org/10.1134/S1063779613020068
http://dx.doi.org/10.1088/0264-9381/31/1/015022
http://dx.doi.org/10.1016/j.physletb.2014.04.024
http://dx.doi.org/10.1142/S0217751X14501164
http://dx.doi.org/10.1103/PhysRevD.89.104011


Universe 2018, 4, 88 17 of 18

99. Kehagias, A.; Maggiore, M. Spherically symmetric static solutions in a nonlocal infrared modification of
General Relativity. J. High Energy Phys. 2014, 1408, 029. [CrossRef]

100. Maggiore, M.; Mancarella, M. Nonlocal gravity and dark energy. Phys. Rev. D 2014, 90, 023005. [CrossRef]
101. Dirian, Y.; Foffa, S.; Khosravi, N.; Kunz, M.; Maggiore, M. Cosmological perturbations and structure

formation in nonlocal infrared modifications of general relativity. J. Cosmol. Astropart. Phys. 2014, 1406, 033.
[CrossRef]

102. Conroy, A.; Koivisto, T.; Mazumdar, A.; Teimouri, A. Generalized quadratic curvature, non-local infrared
modifications of gravity and Newtonian potentials. Class. Quant. Grav. 2015, 32, 015024. [CrossRef]

103. Barreira, A.; Li, B.; Hellwing, W.A.; Baugh, C.M.; Pascoli, S. Nonlinear structure formation in Nonlocal
Gravity. J. Cosmol. Astropart. Phys. 2014, 1409, 031. [CrossRef]

104. Dirian, Y.; Mitsou, E. Stability analysis and future singularity of the m2R −2R model of non-local gravity.
J. Cosmol. Astropart. Phys. 2014, 1410, 065. [CrossRef]

105. Dirian, Y.; Foffa, S.; Kunz, M.; Maggiore, M.; Pettorino, V. Non-local gravity and comparison with
observational datasets. J. Cosmol. Astropart. Phys. 2015, 1504, 044. [CrossRef]

106. Netto, T.D.P.; Pelinson, A.M.; Shapiro, I.L.; Starobinsky, A.A. From stable to unstable anomaly-induced
inflation. Eur. Phys. J. C 2016, 76, 544. [CrossRef]

107. Zhang, X.; Wu, Y.B.; Li, S.; Liu, Y.C.; Chen, B.H.; Chai, Y.T.; Shu, S. Cosmological evolution of generalized
non-local gravity. J. Cosmol. Astropart. Phys. 2016, 1607, 3. [CrossRef]

108. Cusin, G.; Foffa, S.; Maggiore, M.; Mancarella, M. Nonlocal gravity with a Weyl-square term. Phys. Rev. D
2016, 93, 043006. [CrossRef]

109. Zhang, Y.L.; Koyama, K.; Sasaki, M.; Zhao, G.B. Acausality in Nonlocal Gravity Theory. J. High Energy Phys.
2016, 1603, 039. [CrossRef]

110. Cusin, G.; Foffa, S.; Maggiore, M.; Mancarella, M. Conformal symmetry and nonlinear extensions of nonlocal
gravity. Phys. Rev. D 2016, 93, 083008. [CrossRef]

111. Dirian, Y.; Foffa, S.; Kunz, M.; Maggiore, M.; Pettorino, V. Non-local gravity and comparison with
observational datasets. II. Updated results and Bayesian model comparison with ΛCDM. J. Cosmol.
Astropart. Phys. 2016, 1605, 068. [CrossRef]

112. Maggiore, M. Perturbative loop corrections and nonlocal gravity. Phys. Rev. D 2016, 93, 063008. [CrossRef]
113. Koshelev, A.S.; Modesto, L.; Rachwal, L.; Starobinsky, A.A. Occurrence of exact R2 inflation in non-local

UV-complete gravity. J. High Energy Phys. 2016, 1611, 067. [CrossRef]

114. Nersisyan, H.; Akrami, Y.; Amendola, L.; Koivisto, T.S.; Rubio, J. Dynamical analysis of R
1

2 R cosmology:

Impact of initial conditions and constraints from supernovae. Phys. Rev. D 2016, 94, 043531. [CrossRef]
115. Maggiore, M. Nonlocal Infrared Modifications of Gravity. A Review. Fundam. Theor. Phys. 2017, 187, 221–281.

[CrossRef]
116. Wu, Y.B.; Zhang, X.; Wu, M.M.; Zhang, N.; Chen, B.H. Energy conditions and constraints on the generalized

non-local gravity model. Chin. Phys. Lett. 2017, 34, 079801. [CrossRef]
117. Mashhoon, B. Nonlocal Gravity; Oxford University Press: Oxford, UK, 2017.
118. Romania, M.G.; Tsamis, N.C.; Woodard, R.P. Quantum Gravity and Inflation. Lect. Notes Phys. 2013, 863,

375–395. [CrossRef]
119. Tsamis, N.C.; Woodard, R.P. A Phenomenological Model for the Early Universe. Phys. Rev. D 2009, 80, 083512.

[CrossRef]
120. Soussa, M.E.; Woodard, R.P. A Nonlocal metric formulation of MOND. Class. Quant. Grav. 2003, 20, 2737–2751.

[CrossRef]
121. Deser, S.; Woodard, R.P. Nonlocal Cosmology. Phys. Rev. Lett. 2007, 99, 111301. [CrossRef] [PubMed]
122. Deser, S.; Woodard, R.P. Observational Viability and Stability of Nonlocal Cosmology. J. Cosmol. Astropart.

Phys. 2013, 1311, 036. [CrossRef]
123. Woodard, R.P. Nonlocal Models of Cosmic Acceleration. Found. Phys. 2014, 44, 213–233. [CrossRef]
124. Soussa, M.E.; Woodard, R.P. A Generic problem with purely metric formulations of MOND. Phys. Lett. B

2004, 578, 253–258. [CrossRef]
125. Tsamis, N.C.; Woodard, R.P. Primordial Density Perturbations and Reheating from Gravity. Phys. Rev. D

2010, 82, 063502. [CrossRef]

http://dx.doi.org/10.1007/JHEP08(2014)029
http://dx.doi.org/10.1103/PhysRevD.90.023005
http://dx.doi.org/10.1088/1475-7516/2014/06/033
http://dx.doi.org/10.1088/0264-9381/32/1/015024
http://dx.doi.org/10.1088/1475-7516/2014/09/031
http://dx.doi.org/10.1088/1475-7516/2014/10/065
http://dx.doi.org/10.1088/1475-7516/2015/04/044
http://dx.doi.org/10.1140/epjc/s10052-016-4390-4
http://dx.doi.org/10.1088/1475-7516/2016/07/003
http://dx.doi.org/10.1103/PhysRevD.93.043006
http://dx.doi.org/10.1007/JHEP03(2016)039
http://dx.doi.org/10.1103/PhysRevD.93.083008
http://dx.doi.org/10.1088/1475-7516/2016/05/068
http://dx.doi.org/10.1103/PhysRevD.93.063008
http://dx.doi.org/10.1007/JHEP11(2016)067
http://dx.doi.org/10.1103/PhysRevD.94.043531
http://dx.doi.org/10.1007/978-3-319-51700-1_16
http://dx.doi.org/10.1088/0256-307X/34/7/079801
http://dx.doi.org/10.1007/978-3-642-33036-0_13
http://dx.doi.org/10.1103/PhysRevD.80.083512
http://dx.doi.org/10.1088/0264-9381/20/13/321
http://dx.doi.org/10.1103/PhysRevLett.99.111301
http://www.ncbi.nlm.nih.gov/pubmed/17930426
http://dx.doi.org/10.1088/1475-7516/2013/11/036
http://dx.doi.org/10.1007/s10701-014-9780-6
http://dx.doi.org/10.1016/j.physletb.2003.10.090
http://dx.doi.org/10.1103/PhysRevD.82.063502


Universe 2018, 4, 88 18 of 18

126. Tsamis, N.C.; Woodard, R.P. Post-Inflationary Evolution via Gravitation. Phys. Rev. D 2010, 81, 103509.
[CrossRef]

127. Tsamis, N.C.; Woodard, R.P. A Caveat on Building Nonlocal Models of Cosmology. J. Cosmol. Astropart. Phys.
2014, 1409, 8. [CrossRef]

128. Tsamis, N.C.; Woodard, R.P. Improved cosmological model. Phys. Rev. D 2016, 94, 043508. [CrossRef]
129. Deffayet, C.; Woodard, R.P. Reconstructing the Distortion Function for Nonlocal Cosmology. J. Cosmol.

Astropart. Phys. 2009, 8, 023. [CrossRef]
130. Park, S.; Dodelson, S. Structure formation in a nonlocally modified gravity model. Phys. Rev. D 2013,

87, 024003. [CrossRef]
131. Dodelson, S.; Park, S. Nonlocal Gravity and Structure in the Universe. Phys. Rev. D 2014, 90, 043535.

[CrossRef]
132. Park, S.; Shafieloo, A. Growth of perturbations in nonlocal gravity with non-ΛCDM background. Phys. Rev. D

2017, 95, 064061. [CrossRef]
133. Nersisyan, H.; Cid, A.F.; Amendola, L. Structure formation in the Deser-Woodard nonlocal gravity model:

A reappraisal. J. Cosmol. Astropart. Phys. 2017, 1704, 046. [CrossRef]
134. Park, S. Revival of the Deser-Woodard nonlocal gravity model: Comparison of the original nonlocal form

and a localized formulation. Phys. Rev. D 2018, 97, 044006. [CrossRef]
135. Deffayet, C.; Esposito-Farese, G.; Woodard, R.P. Field equations and cosmology for a class of nonlocal metric

models of MOND. Phys. Rev. D 2014, 90, 064038; Addendum: 2014, 90, 089901. [CrossRef]
136. Woodard, R.P. Nonlocal metric realizations of MOND. Can. J. Phys. 2015, 93, 242–249. [CrossRef]
137. Kim, M.; Rahat, M.H.; Sayeb, M.; Tan, L.; Woodard, R.P.; Xu, B. Determining Cosmology for a Nonlocal

Realization of MOND. Phys. Rev. D 2016, 94, 104009. [CrossRef]
138. Tan, L.; Woodard, R.P. Structure Formation in Nonlocal MOND. J. Cosmol. Astropart. Phys. 2018, 1805, 037.

[CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevD.81.103509
http://dx.doi.org/10.1088/1475-7516/2014/09/008
http://dx.doi.org/10.1103/PhysRevD.94.043508
http://dx.doi.org/10.1088/1475-7516/2009/08/023
http://dx.doi.org/10.1103/PhysRevD.87.024003
http://dx.doi.org/10.1103/PhysRevD.90.043535
http://dx.doi.org/10.1103/PhysRevD.95.064061
http://dx.doi.org/10.1088/1475-7516/2017/04/046
http://dx.doi.org/10.1103/PhysRevD.97.044006
http://dx.doi.org/10.1103/PhysRevD.90.064038
http://dx.doi.org/10.1139/cjp-2014-0156
http://dx.doi.org/10.1103/PhysRevD.94.104009
http://dx.doi.org/10.1088/1475-7516/2018/05/037
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Shortcomings of Dark Matter and Energy
	The Willing Suspension of Disbelief
	Unexplained Regularities of Cosmic Structures
	Fine Tuning Problems

	Options for Modifying Gravity
	Problems with f(R) Models
	Problems with Fundamental Nonlocality

	Modified Gravity as Vacuum Polarization
	Macroscopic Nonlocality in Flat Space QED
	Inflationary Particle Production
	Corrections to EM and GR During Inflation
	-Driven Inflation

	Answers to My Critics
	``Your Effects are Gauge Dependent''
	``IR Gravitons Have Small Curvature''
	``Your Effects Are Not Observable''
	``Your Calculations Are Difficult''

	Conclusions
	References

