# Infinitesimal Structure of Singularities

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Categorically Generalised Theory of Manifolds

## 3. Formal Manifolds

**Definition**

**1.**

**Proposition**

**1.**

**Definition**

**2.**

## 4. Curvature of Infinitesimal Formal Manifolds

**Theorem**

**1.**

**Proof.**

## 5. A Model

## 6. Conclusions and Comments

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Döring, A.; Isham, C.J. A topos foundation for theories of physics: I. Formal languages for physics. J. Math. Phys.
**2008**, 49, 053515. [Google Scholar] [CrossRef] - Döring, A.; Isham, C.J. A topos foundation for theories of physics: II. A Topos Foundation for Theories of Physics: II. Daseinisation and the Liberation of Quantum Theory. J. Math. Phys.
**2008**, 49, 053516. [Google Scholar] [CrossRef] - Döring, A.; Isham, C.J. A topos foundation for theories of physics: III. The Representation of Physical Quantities With Arrows. J. Math. Phys.
**2008**, 49, 053517. [Google Scholar] [CrossRef] - Döring, A.; Isham, C.J. A topos foundation for theories of physics: IV. Categories of systems. J. Math. Phys.
**2008**, 49, 053518. [Google Scholar] [CrossRef] - Heunen, C.; Landsman, N.P.; Spitters, B. Bohrifcation. In Deep Beauty: Understanding the Quantum World through Mathematical Innovation; Halvorson, H., Ed.; Cambridge University Press: Cambridge, UK, 2011; pp. 271–313. [Google Scholar]
- Landsman, K. Bohrification: From Classical Concepts to Commutative Algebras. arXiv, 2016; arXiv:1601.02794. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Tipler, F.J.; Clarke, C.J.S.; Ellis, G.F.R. Singularities and Horizons—A Review Article. In General Relativity and Gravitation. One Hundred Years after the Birth of Albert Einstein; Held, A., Ed.; Plenum Publishing Corporation: New York, NY, USA; Volume 2, pp. 97–206.
- Clarke, C.J.S. The Analysis of Space-Time Singularities; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Earman, J. Bangs, Crunches, Whimpers, and Shrieks; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Heller, M.; Król, J. How Logic Interacts with Geometry: Infinitesimal Curvature of Categorical Spaces. arXiv, 2016; arXiv:1605.03099. [Google Scholar]
- Heller, M.; Król, J. Synthetic Approach to the Singularity Problem. arXiv, 2016; arXiv:1607.08264. [Google Scholar]
- Crane, L. Categorical Geometry and the Mathematical Foundations of Quantum General Relativity; Cambridge University Press: Cambridge, UK, 2009; pp. 84–98. [Google Scholar]
- Grinkevich, Y.B. Synthetic Differential Geometry: A Way to Intuitionistic Models of General Relativity in Toposes. arXiv, 1996; arXiv:gr-qc/9608013. [Google Scholar]
- Guts, A.K.; Grinkevich, Y.B. Toposes in General Theory of Relativity. arXiv, 1996; arXiv:physics/9909016. [Google Scholar]
- Guts, A.K.; Zvyagintsev, A.A. Solution of the Vacuum Einstein Equations in Synthetic Differential Geometry of Kock-Lawvire. arXiv, 1999; arXiv:physics/9909016. [Google Scholar]
- Heunen, C.; Landsman, N.P.; Spitters, B.A.W. The Principle of General Tovariance. In Proceedings of the Geometry and Physics: XVI International Fall Workshop, Lisboa, Portugal, 5–8 September 2007.
- Kostecki, R.P. The Categorical Foundations for General Relativity. Master’s Thesis, University of Warsaw, Warszawa, Poland, May 2005. [Google Scholar]
- Moerdijk, I.; Reyes, G.E. Models for Smooth Infinitesimal Analysis; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Kock, A. Formal Manifolds and Synthetic Theory of Jet Bundles. Cah. Topol. Geom. Differ.
**1980**, 21, 227–246. [Google Scholar] - Kock, A. Synthetic Differential Geometry, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Kostecki, R.P. Differential Geometry in Toposes. Available online: http://www.fuw.edu.pl/~kostecki/sdg.pdf (accessed on 22 February 2017).
- Kock, A. Properties of Well-Adapted Models for Synthetic Differential Geometry. J. Pure Appl. Algebra
**1981**, 20, 55–70. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D.; Tsujikawa, S. Properties of Singularities in (Phantom) Dark Energy Universe. Phys. Rev. D
**2005**, 71, 063004. [Google Scholar] [CrossRef]

^{1.}They speak about a new “principle of general tovariance” (“to” instead of “co” after topos).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Heller, M.; Król, J.
Infinitesimal Structure of Singularities. *Universe* **2017**, *3*, 16.
https://doi.org/10.3390/universe3010016

**AMA Style**

Heller M, Król J.
Infinitesimal Structure of Singularities. *Universe*. 2017; 3(1):16.
https://doi.org/10.3390/universe3010016

**Chicago/Turabian Style**

Heller, Michael, and Jerzy Król.
2017. "Infinitesimal Structure of Singularities" *Universe* 3, no. 1: 16.
https://doi.org/10.3390/universe3010016