Experimental Studies on the Lorentz Symmetry in Post-Newtonian Gravity with Pulsars †
Abstract
:1. Introduction
2. Parametrized Post-Newtonian Gravity of Will and Nordtvedt
3. Standard-Model Extension of Kostelecký et al.
4. Discussion
Conflicts of Interest
References
- Kostelecký, V.A.; Russell, N. Data Tables for Lorentz and CPT Violation. Rev. Mod. Phys. 2011, 83, 11–31. [Google Scholar] [CrossRef]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef]
- Tasson, J.D. What Do We Know about Lorentz Invariance? Rep. Prog. Phys. 2014, 77, 062901. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Wex, N. Tests of Gravitational Symmetries with Radio Pulsars. Sci. China Phys. Mech. Astron. 2016, 59, 699501. [Google Scholar] [CrossRef]
- Hees, A.; Bailey, Q.G.; Bourgoin, A.; Pihan-LeBars, H.; Guerlin, C.; le Poncin-Lafitte, C. Tests of Lorentz Symmetry in the Gravitational Sector. arXiv, 2016; arXiv:1610.04682v1. [Google Scholar]
- Kostelecký, V.A. Gravity, Lorentz Violation, and the Standard Model. Phys. Rev. D 2004, 69, 105009. [Google Scholar] [CrossRef]
- Bailey, Q.G.; Kostelecký, V.A. Signals for Lorentz Violation in Post-Newtonian Gravity. Phys. Rev. D 2006, 74, 045001. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Tasson, J.D. Matter-Gravity Couplings and Lorentz Violation. Phys. Rev. D 2011, 83, 016013. [Google Scholar] [CrossRef]
- Iorio, L. Constraining the Preferred-Frame α1, α2 Parameters from Solar System Planetary Precessions. Int. J. Mod. Phys. D 2014, 23, 1450006. [Google Scholar] [CrossRef]
- Iorio, L. Preliminary bounds of the gravitational local position invariance from Solar system planetary precessions. Mon. Notic. Roy. Astron. Soc. 2014, 437, 3482–3489. [Google Scholar] [CrossRef]
- Iorio, L. Orbital effects of Lorentz-violating standard model extension gravitomagnetism around a static body: A sensitivity analysis. Class. Quantum Gravity 2012, 29, 175007. [Google Scholar] [CrossRef]
- Battat, J.B.R.; Chandler, J.F.; Stubbs, C.W. Testing for Lorentz Violation: Constraints on Standard-Model-Extension Parameters via Lunar Laser Ranging. Phys. Rev. Lett. 2007, 99, 241103. [Google Scholar] [CrossRef] [PubMed]
- Bourgoin, A.; Hees, A.; Bouquillon, S.; Le Poncin-Lafitte, C.; Francou, G.; Angonin, M.-C. Testing Lorentz Symmetry with Lunar Laser Ranging. arXiv, 2016; arXiv:1607.00294v3. [Google Scholar]
- Müller, H.; Chiow, S.-W.; Herrmann, S.; Chu, S.; Chung, K.-Y. Atom-Interferometry Tests of the Isotropy of Post-Newtonian Gravity. Phys. Rev. Lett. 2008, 100, 031101. [Google Scholar] [CrossRef] [PubMed]
- Damour, T.; Esposito-Farèse, G. Testing Local Lorentz Invariance of Gravity with Binary-Pulsar Data. Phys. Rev. D 1992, 46, 4128–4132. [Google Scholar] [CrossRef]
- Shao, L.; Wex, N. New Tests of Local Lorentz Invariance of Gravity with Small-Eccentricity Binary Pulsars. Class. Quantum Gravity 2012, 29, 215018. [Google Scholar] [CrossRef]
- Shao, L.; Caballero, R.N.; Kramer, M.; Wex, N.; Champion, D.J.; Jessner, A. A New Limit on Local Lorentz Invariance Violation of Gravity from Solitary Pulsars. Class. Quantum Gravity 2013, 30, 165019. [Google Scholar] [CrossRef]
- Shao, L. Tests of Local Lorentz Invariance Violation of Gravity in the Standard Model Extension with Pulsars. Phys. Rev. Lett. 2014, 112, 111103. [Google Scholar] [CrossRef] [PubMed]
- Shao, L. New Pulsar Limit on Local Lorentz Invariance Violation of Gravity in the Standard-Model Extension. Phys. Rev. D 2014, 90, 122009. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Tasson, J.D. Constraints on Lorentz Violation from Gravitational Čerenkov Radiation. Phys. Lett. B 2015, 749, 551–559. [Google Scholar] [CrossRef]
- Tasson, J.D. The Standard-Model Extension and Gravitational Tests. Symmetry 2016, 8, 111. [Google Scholar] [CrossRef]
- Le Poncin-Lafitte, C.; Hees, A.; Lambert, S. Lorentz symmetry and Very Long Baseline Interferometry. arXiv, 2016; arXiv:1604.01663v1. [Google Scholar]
- Bailey, Q.G.; Kostelecký, V.A.; Xu, R. Short-Range Gravity and Lorentz Violation. Phys. Rev. D 2015, 91, 022006. [Google Scholar] [CrossRef]
- Shao, C.-G.; Tan, Y.-J.; Tan, W.-H.; Yang, S.-Q.; Luo, J.; Tobar, M.E.; Bailey, Q.G.; Long, J.C.; Weisman, E.; Xu, R.; et al. Combined Search for Lorentz Violation in Short-Range Gravity. Phys. Rev. Lett. 2016, 117, 071102. [Google Scholar] [CrossRef] [PubMed]
- Long, J.C.; Kostelecký, V.A. Search for Lorentz violation in short-range gravity. Phys. Rev. D 2015, 91, 092003. [Google Scholar] [CrossRef]
- Shao, C.-G.; Tan, Y.-J.; Tan, W.-H.; Yang, S.-Q.; Luo, J.; Tobar, M.E. Search for Lorentz invariance violation through tests of the gravitational inverse square law at short ranges. Phys. Rev. D 2015, 91, 102007. [Google Scholar] [CrossRef]
- Wex, N. Small-Eccentricity Binary Pulsars and Relativistic Gravity. arXiv, 2000; arXiv:gr-qc/0002032. [Google Scholar]
- Xie, Y. Testing Lorentz Violation with Binary Pulsars: Constraints on Standard Model Extension. Res. Astron. Astrophys. 2013, 13, 1–4. [Google Scholar] [CrossRef]
- Will, C.M.; Nordtvedt, K., Jr. Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism. Astrophys. J. 1972, 177, 757–774. [Google Scholar] [CrossRef]
- Wex, N. Testing Relativistic Gravity with Radio Pulsars. arXiv, 2014; arXiv:1402.5594v1. [Google Scholar]
- Freire, P.C.C.; Wex, N.; Esposito-Farèse, G.; Verbiest, J.P.W.; Bailes, M.; Jacoby, B.A.; Kramer, M.; Stairs, I.H.; Antoniadis, J.; Janssen, G.H. The Relativistic Pulsar-White Dwarf Binary PSR J1738+0333—II. The Most Stringent Test of Scalar-Tensor Gravity. Mon. Notic. Roy. Astron. Soc. 2012, 423, 3328–3343. [Google Scholar] [CrossRef]
- Shao, L.; Wex, N.; Kramer, M. New Constraints on Preferred Frame Effects from Binary Pulsars. Proc. Int. Astron. Union 2012, 291, 496–498. [Google Scholar] [CrossRef]
- Nordtvedt, K. Probing Gravity to the Second Post-Newtonian Order and to One Part in 107 Using the Spin Axis of the Sun. Astrophys. J. 1987, 320, 871–874. [Google Scholar] [CrossRef]
- Shao, L.; Wex, N. New Limits on the Violation of Local Position Invariance of Gravity. Class. Quantum Gravity 2013, 30, 165020. [Google Scholar] [CrossRef]
- Jennings, R.J.; Tasson, J.D.; Yang, S. Matter-Sector Lorentz Violation in Binary Pulsars. Phys. Rev. D 2015, 92, 125028. [Google Scholar] [CrossRef]
- Bailey, Q.G. Anisotropic Cubic Curvature Couplings. Phys. Rev. D 2016, 94, 065029. [Google Scholar] [CrossRef]
- Amelino-Camelia, G. Quantum-Spacetime Phenomenology. Living Rev. Relativ. 2013, 16, 5. [Google Scholar] [CrossRef]
- Shao, L.; Stairs, I.H.; Antoniadis, J.; Deller, A.T.; Freire, P.C.C.; Hessels, J.W.T.; Janssen, G.H.; Kramer, M.; Kunz, J.; Lämmerzahl, C.; et al. Testing Gravity with Pulsars in the SKA Era. arXiv, 2015; arXiv:1501.00058v1. [Google Scholar]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, L. Experimental Studies on the Lorentz Symmetry in Post-Newtonian Gravity with Pulsars. Universe 2016, 2, 29. https://doi.org/10.3390/universe2040029
Shao L. Experimental Studies on the Lorentz Symmetry in Post-Newtonian Gravity with Pulsars. Universe. 2016; 2(4):29. https://doi.org/10.3390/universe2040029
Chicago/Turabian StyleShao, Lijing. 2016. "Experimental Studies on the Lorentz Symmetry in Post-Newtonian Gravity with Pulsars" Universe 2, no. 4: 29. https://doi.org/10.3390/universe2040029
APA StyleShao, L. (2016). Experimental Studies on the Lorentz Symmetry in Post-Newtonian Gravity with Pulsars. Universe, 2(4), 29. https://doi.org/10.3390/universe2040029