Electrospun Fibers: Advancement in Drug Delivery, Controlled Release, and Tissue Regeneration

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: closed (20 December 2023) | Viewed by 8822

Special Issue Editors

Special Issue Information

Dear Colleagues,

Electrospinning is a simple and versatile technique that relies on electrostatic repulsion between surface charges to produce dry fibers at micro/nanometric scale. This technique has been applied to successfully produce fibers that possess high surface-to-volume ratio and high porosity. Electrospun fibers can be obtained from a rich variety of materials, including polymers, ceramics, small molecules, and their combinations. In addition to solid nanofibers with a smooth surface, electrospinning has been used to generate nanofibers with a number of secondary structures, such as porous, hollow or sheathed-core fibers. The surface and/or interior of such nanofibers can be further functionalized with molecular species or nanoparticles during or after the electrospinning process to control the drug delivery mechanism. Electrospun nanofibers can be assembled into ordered and aligned arrays or random structures able to mimic the native structure of the extracellular matrix. Thanks to this characteristic they are often used as supports for cell adhesion, proliferation, and differentiation. Moreover, electrospun fibers are used for the preparation of hybrid systems composed of various materials produced with different manufacturing technologies to act in synergy and increase the overall performance of systems. All these attributes make electrospun fibers suitable tools for a broad spectrum of applications such as drug delivery, controlled release and tissue regeneration.

This Special Issue of Pharmaceutics will attempt to cover the recent advancements in the fabrication and application of electrospun fibers in Drug Delivery, Controlled Release, and Tissue Regeneration.

We look forward to receiving your contributions.

Dr. Silvia Pisani
Prof. Dr. Bice Conti
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electrospun fibers
  • drug-loaded nanofibers
  • hybrid nanofibers
  • functionalized nanofibers
  • hollow nanofibers
  • porous nanofibers
  • polymeric nanofibers
  • cellularized nanofibers
  • engineered nanofibers

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 4190 KiB  
Article
Investigation on Electrospun and Solvent-Casted PCL-PLGA Blends Scaffolds Embedded with Induced Pluripotent Stem Cells for Tissue Engineering
by Mariella Rosalia, Martina Giacomini, Erika Maria Tottoli, Rossella Dorati, Giovanna Bruni, Ida Genta, Enrica Chiesa, Silvia Pisani, Maurilio Sampaolesi and Bice Conti
Pharmaceutics 2023, 15(12), 2736; https://doi.org/10.3390/pharmaceutics15122736 - 6 Dec 2023
Cited by 1 | Viewed by 1377
Abstract
The design, production, and characterisation of tissue-engineered scaffolds made of polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL) and their blends obtained through electrospinning (ES) or solvent casting/particulate leaching (SC) manufacturing techniques are presented here. The polymer blend composition was chosen to always obtain a prevalence [...] Read more.
The design, production, and characterisation of tissue-engineered scaffolds made of polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL) and their blends obtained through electrospinning (ES) or solvent casting/particulate leaching (SC) manufacturing techniques are presented here. The polymer blend composition was chosen to always obtain a prevalence of one of the two polymers, in order to investigate the contribution of the less concentrated polymer on the scaffolds’ properties. Physical–chemical characterization of ES scaffolds demonstrated that tailoring of fibre diameter and Young modulus (YM) was possible by controlling PCL concentration in PLGA-based blends, increasing the fibre diameter from 0.6 to 1.0 µm and reducing the YM from about 22 to 9 MPa. SC scaffolds showed a “bubble-like” topography, caused by the porogen spherical particles, which is responsible for decreasing the contact angles from about 110° in ES scaffolds to about 74° in SC specimens. Nevertheless, due to phase separation within the blend, solvent-casted samples displayed less reproducible properties. Furthermore, ES samples were characterised by 10-fold higher water uptake than SC scaffolds. The scaffolds suitability as iPSCs culturing support was evaluated using XTT assay, and pluripotency and integrin gene expression were investigated using RT-PCR and RT-qPCR. Thanks to their higher wettability and appropriate YM, SC scaffolds seemed to be superior in ensuring high cell viability over 5 days, whereas the ability to maintain iPSCs pluripotency status was found to be similar for ES and SC scaffolds. Full article
Show Figures

Graphical abstract

24 pages, 5224 KiB  
Article
Wettability of Amino Acid-Functionalized PSMA Electrospun Fibers for the Modulated Release of Active Agents and Its Effect on Their Bioactivity
by Sebastián Santander, Nicolás Padilla-Manzano, Bastián Díaz, Renato Bacchiega, Elizabeth Jara, Luis Felipe Álvarez, Cristóbal Pinto, Juan C. Forero, Paula Santana, Eugenio Hamm, Marcela Urzúa and Laura Tamayo
Pharmaceutics 2023, 15(6), 1659; https://doi.org/10.3390/pharmaceutics15061659 - 5 Jun 2023
Cited by 4 | Viewed by 1765
Abstract
The ideal treatment for chronic wounds is based on the use of bioactive dressings capable of releasing active agents. However, the control of the rate at which these active agents are released is still a challenge. Bioactive polymeric fiber mats of poly(styrene-co [...] Read more.
The ideal treatment for chronic wounds is based on the use of bioactive dressings capable of releasing active agents. However, the control of the rate at which these active agents are released is still a challenge. Bioactive polymeric fiber mats of poly(styrene-co-maleic anhydride) [PSMA] functionalized with amino acids of different hydropathic indices and L-glutamine, L-phenylalanine and L-tyrosine levels allowed obtaining derivatives of the copolymers named PSMA@Gln, PSMA@Phe and PSMA@Tyr, respectively, with the aim of modulating the wettability of the mats. The bioactive characteristics of mats were obtained by the incorporation of the active agents Calendula officinalis (Cal) and silver nanoparticles (AgNPs). A higher wettability for PSMA@Gln was observed, which is in accordance with the hydropathic index value of the amino acid. However, the release of AgNPs was higher for PSMA and more controlled for functionalized PSMA (PSMAf), while the release curves of Cal did not show behavior related to the wettability of the mats due to the apolar character of the active agent. Finally, the differences in the wettability of the mats also affected their bioactivity, which was evaluated in bacterial cultures of Staphylococcus aureus ATCC 25923 and methicillin-resistant Staphylococcus aureus ATCC 33592, an NIH/3T3 fibroblast cell line and red blood cells. Full article
Show Figures

Graphical abstract

22 pages, 4884 KiB  
Article
Electrospun Naringin-Loaded Fibers for Preventing Scar Formation during Wound Healing
by Erika M. Tottoli, Laura Benedetti, Enrica Chiesa, Silvia Pisani, Giovanna Bruni, Ida Genta, Bice Conti, Gabriele Ceccarelli and Rossella Dorati
Pharmaceutics 2023, 15(3), 747; https://doi.org/10.3390/pharmaceutics15030747 - 23 Feb 2023
Cited by 4 | Viewed by 1942
Abstract
Hypertrophic scars (HTSs) are aberrant structures that develop where skin is injured complexly and represent the result of a chronic inflammation as a healing response. To date, there is no satisfactory prevention option for HTSs, which is due to the complexity of multiple [...] Read more.
Hypertrophic scars (HTSs) are aberrant structures that develop where skin is injured complexly and represent the result of a chronic inflammation as a healing response. To date, there is no satisfactory prevention option for HTSs, which is due to the complexity of multiple mechanisms behind the formation of these structures. The present work aimed to propose Biofiber (Biodegradable fiber), an advanced textured electrospun dressing, as a suitable solution for HTS formation in complex wounds. Biofiber has been designed as a 3-day long-term treatment to protect the healing environment and enhance wound care practices. Its textured matrix consists of homogeneous and well-interconnected Poly-L-lactide-co-poly-ε-caprolactone (PLA-PCL) electrospun fibers (size 3.825 ± 1.12 µm) loaded with Naringin (NG, 2.0% w/w), a natural antifibrotic agent. The structural units contribute to achieve an optimal fluid handling capacity demonstrated through a moderate hydrophobic wettability behavior (109.3 ± 2.3°), and a suitable balance between absorbency (389.8 ± 58.16%) and moisture vapor transmission rate (MVTR, 2645 ± 60.43 g/m2 day). The flexibility and conformability of Biofiber to the body surfaces is due to its innovative circular texture, that also allow it to obtain finer mechanical properties after 72 h in contact with Simulated Wound Fluid (SWF), with an elongation of 352.6 ± 36.10%, and a great tenacity (0.25 ± 0.03 Mpa). The ancillary action of NG results in a prolonged anti-fibrotic effect on Normal Human Dermal Fibroblasts (NHDF), through the controlled release of NG for 3 days. The prophylactic action was highlighted at day 3 with the down regulation of the major factors involved in the fibrotic process: Transforming Growth Factor β1 (TGF-β1), Collagen Type 1 alpha 1 chain (COL1A1), and α-smooth muscle actin (α-SMA). No significant anti-fibrotic effect has been demonstrated on Hypertrophic Human Fibroblasts derived from scars (HSF), proving the potential of Biofiber to minimize HTSs in the process of early wound healing as a prophylactic therapy. Full article
Show Figures

Graphical abstract

10 pages, 1985 KiB  
Article
Urea-Based Patches with Controlled Release for Potential Atopic Dermatitis Treatment
by Zuzanna J. Krysiak and Urszula Stachewicz
Pharmaceutics 2022, 14(7), 1494; https://doi.org/10.3390/pharmaceutics14071494 - 19 Jul 2022
Cited by 12 | Viewed by 2973
Abstract
Skin diseases such as atopic dermatitis (AD) are widespread and affect people all over the world. Current treatments for dry and itchy skin are mostly focused on pharmaceutical solutions, while supportive therapies such as ointments bring immediate relief. Electrospun membranes are commonly used [...] Read more.
Skin diseases such as atopic dermatitis (AD) are widespread and affect people all over the world. Current treatments for dry and itchy skin are mostly focused on pharmaceutical solutions, while supportive therapies such as ointments bring immediate relief. Electrospun membranes are commonly used as a drug delivery system, as they have a high surface to volume area, resulting in high loading capacity. Within this study we present the manufacturing strategies of skin patches using polymer membranes with active substances for treating various skin problems. Here, we manufactured the skin patches using electrospun poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB) fibers blended and electrosprayed with urea. The highest cumulative release of urea was obtained from the PVB patches manufactured via blend electrospinning with 5% of the urea incorporated in the fiber. The maximum concentration of released urea was acquired after 30 min, which was followed up by 6 h of constant release level. The simultaneous electrospinning and electrospraying limited the urea deposition and resulted in the lowest urea incorporation followed by the low release level. The urea-based patches, manufactured via blend electrospinning, exhibited a great potential as overnight treatment for various skin problems and their development can bring new trends to the textile-based therapies for AD. Full article
Show Figures

Graphical abstract

Back to TopTop