The Tandem of Liquid Chromatography and Network Pharmacology for the Chemical Profiling of Pule’an Tablets and the Prediction of Mechanism of Action in Treating Prostatitis
Abstract
:1. Introduction
2. Results
2.1. Identification of Compounds in Pule’an Tablets Based on LC-MS
2.2. Network Pharmacological Analysis of Identified Compounds
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Sample Preparation
4.2.1. Sample Preparation for Flavonoid Analysis
4.2.2. Sample Preparation for Phenylpropionamide Analysis
4.2.3. Sample Preparation for Lipid Analysis
4.2.4. Sample Preparation for Glucosinolate and Nucleic Acids Compounds
4.3. LC-MS System and Apparatus
4.4. LC-MS Analytical Methods
4.4.1. Test Conditions for Flavonoids
4.4.2. Test Conditions for Phenylpropionamides
4.4.3. Test Conditions for Lipids
4.4.4. Test Conditions for Glucosinolates and Nucleic Acids
4.5. Targeted Network Pharmacology Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krieger, J.N.; Lee, S.W.H.; Jeon, J.; Cheah, P.Y.; Liong, M.L.; Riley, D.E. Epidemiology of prostatitis. Int. J. Antimicrob. Agents 2008, 31, 85–90. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, C.; Kramer, G.; Marberger, M.; Montironi, R.; Nelson, W.; Schröder, F.; Sciarra, A.; Tubaro, A. The Controversial Relationship Between Benign Prostatic Hyperplasia and Prostate Cancer: The Role of Inflammation. Eur. Urol. 2011, 60, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Sfanos, K.S.; Yegnasubramanian, S.; Nelson, W.G.; De Marzo, A.M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat. Rev. Urol. 2018, 15, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Krieger, J.N.; Nyberg, L., Jr.; Nickel, J.C. NIH Consensus Definition and Classification of Prostatitis. JAMA 1999, 282, 236–237. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Mikrani, R.; Xie, D.; Wazir, J.; Shrestha, S.; Ullah, R.; Baig, M.M.F.A.; Ahmed, A.; Srivastava, P.K.; Thapa, K.B.; et al. Chronic prostatitis/chronic pelvic pain syndrome and prostate cancer: Study of immune cells and cytokines. Fundam. Clin. Pharmacol. 2020, 34, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Hattori, T.; Sugaya, K. Mechanisms of action for α1-adrenoceptor blockers in storage symptoms with new insights into the micturition reflex. Life Sci. 2017, 191, 90–96. [Google Scholar] [CrossRef]
- Qin, Z.; Wu, J.; Tian, J.; Zhou, J.; Liu, Y.; Liu, Z. Network Meta-Analysis of the Efficacy of Acupuncture, Alpha-blockers and Antibiotics on Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Sci. Rep. 2016, 6, 35737. [Google Scholar] [CrossRef]
- Li, X.-T. Introductory Chapter: Therapies Based on Kidney Essence and Qi in Chinese Medicine. In Chinese Medical Therapies for Diabetes, Infertility, Silicosis and the Theoretical Basis; IntechOpen: London, UK, 2017; ISBN 978-953-51-2914-1. [Google Scholar]
- Yang, F.; Xiao, F.; Yao, W.; Gao, Y. Clinical effcacy of Qianliekang tablets on type Ⅲ prostatitis. Chin. J. Clin. Pharmacol. 2014, 30, 765–766. [Google Scholar] [CrossRef]
- Sha, J. Comparative study of Qianlie Kang and Prostat Tablets in the treatment of prostatic hyperplasia. Electron. J. Clin. Med. Lit. 2016, 3, 10828. [Google Scholar] [CrossRef]
- Tsunemori, H.; Sugimoto, M. Effects of inflammatory prostatitis on the development and progression of benign prostatic hyperplasia: A literature review. Int. J. Urol. 2021, 28, 1086–1092. [Google Scholar] [CrossRef]
- Yang, C.; Yao, J.; Chen, T. The effect of Qianliekang tablets on the clinical efficacy, immune function, and inflammatory factor levels in the prostatic fluid of elderly chronic prostatitis patients. Am. J. Transl. Res. 2021, 13, 7363–7369. [Google Scholar] [PubMed]
- Sayed, A.M.E.; Omar, F.A.; Emam, M.M.A.-A.; Farag, M.A. UPLC-MS/MS and GC-MS based metabolites profiling of Moringa oleifera seed with its anti-Helicobacter pylori and anti-inflammatory activities. Nat. Prod. Res. 2022, 36, 6433–6438. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Lai, J.; Wu, Y.; Fang, S.; Liang, X. Investigation on Antioxidant Activity and Different Metabolites of Mulberry (Morus spp.) Leaves Depending on the Harvest Months by UPLC–Q-TOF-MS with Multivariate Tools. Molecules 2023, 28, 1947. [Google Scholar] [CrossRef] [PubMed]
- De Lima Júnior, J.P.; Franco, R.R.; Saraiva, A.L.; Moraes, I.B.; Espindola, F.S. Anacardium humile St. Hil as a novel source of antioxidant, antiglycation and α-amylase inhibitors molecules with potential for management of oxidative stress and diabetes. J. Ethnopharmacol. 2021, 268, 113667. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yang, N.; Zhang, J.; Huang, Y.; Xiang, Q.; Wen, J.; Chen, Y.; Hu, T.; Qiuyan, L.; Rao, C. Neurotoxicity study of ethyl acetate extract of Zanthoxylum armatum DC. on SH-SY5Y based on ROS mediated mitochondrial apoptosis pathway. J. Ethnopharmacol. 2024, 319, 117321. [Google Scholar] [CrossRef] [PubMed]
- De Paula Menezes, R.; de Bessa, M.A.S.; de Siqueira, C.P.; Teixeira, S.C.; Ferro, E.A.V.; Martins, M.M.; Cunha, L.C.S.; Martins, C.H.G. Antimicrobial, Antivirulence, and Antiparasitic Potential of Capsicum chinense Jacq. Extracts and Their Isolated Compound Capsaicin. Antibiotics 2022, 11, 1154. [Google Scholar] [CrossRef]
- Aguila-Muñoz, D.G.; Jiménez-Montejo, F.E.; López-López, V.E.; Mendieta-Moctezuma, A.; Rodríguez-Antolín, J.; Cornejo-Garrido, J.; Cruz-López, M.C. Evaluation of α-Glucosidase Inhibition and Antihyperglycemic Activity of Extracts Obtained from Leaves and Flowers of Rumex crispus L. Molecules 2023, 28, 5760. [Google Scholar] [CrossRef]
- Han, S.H.; Lee, H.-D.; Lee, S.; Lee, A.Y. Taraxacum coreanum Nakai extract attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier dysfunction in Caco-2 cells. J. Ethnopharmacol. 2024, 319, 117105. [Google Scholar] [CrossRef]
- Qiao, J.; Feng, Z.; Zhang, Y.; Xiao, X.; Dong, J.; Haubruge, E.; Zhang, H. Phenolamide and flavonoid glycoside profiles of 20 types of monofloral bee pollen. Food Chem. 2023, 405, 134800. [Google Scholar] [CrossRef]
- Williams, P.E.; Klein, D.R.; Greer, S.M.; Brodbelt, J.S. Pinpointing Double Bond and sn-Positions in Glycerophospholipids via Hybrid 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. J. Am. Chem. Soc. 2017, 139, 15681–15690. [Google Scholar] [CrossRef]
- Zhao, J.; Xie, C.; Wang, K.; Takahashi, S.; Krausz, K.W.; Lu, D.; Wang, Q.; Luo, Y.; Gong, X.; Mu, X.; et al. Comprehensive analysis of transcriptomics and metabolomics to understand triptolide-induced liver injury in mice. Toxicol. Lett. 2020, 333, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.; Wang, M.; Zhou, Y.; Yuan, D.; Jian, Q.; Wu, S.; Liu, B.; Yang, Y. Deciphering the pharmacological mechanisms of Rostellularia procumbens (L) Nees. Extract alleviates adriamycin-induced nephropathy in vivo and in vitro. Phytomedicine 2023, 113, 154736. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Jarrell, Z.R.; Smith, M.R.; Ly, V.T.; Liang, Y.; Orr, M.; Go, Y.-M.; Jones, D.P. Metabolomics of V2O5 nanoparticles and V2O5 nanofibers in human airway epithelial BEAS-2B cells. Toxicol. Appl. Pharmacol. 2023, 459, 116327. [Google Scholar] [CrossRef] [PubMed]
- Panara, A.; Aalizadeh, R.; Thomaidis, N.S. Chemical characterisation of Pelargonium sidoides root based on LC-QToF-MS non-target screening strategies. Phytochem. Anal. 2022, 33, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Bialecki, J.B.; Ruzicka, J.; Weisbecker, C.S.; Haribal, M.; Attygalle, A.B. Collision-induced dissociation mass spectra of glucosinolate anions. J. Mass. Spectrom. 2010, 45, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhu, Y.; Zhao, X.; Yang, Z. Tingli Dazao Decoction pretreatment ameliorates mitochondrial damage induced by oxidative stress in cardiomyocytes. J. Ethnopharmacol. 2023, 303, 115987. [Google Scholar] [CrossRef] [PubMed]
- Giorgetti, L.; Giorgi, G.; Cherubini, E.; Gervasi, P.G.; Della Croce, C.M.; Longo, V.; Bellani, L. Screening and identification of major phytochemical compounds in seeds, sprouts and leaves of Tuscan black kale Brassica oleracea (L.) ssp acephala (DC) var. sabellica L. Nat. Prod. Res. 2018, 32, 1617–1626. [Google Scholar] [CrossRef]
- Yu, X.; He, H.; Zhao, X.; Liu, G.; Hu, L.; Cheng, B.; Wang, Y. Determination of 18 Intact Glucosinolates in Brassicaceae Vegetables by UHPLC-MS/MS: Comparing Tissue Disruption Methods for Sample Preparation. Molecules 2022, 27, 231. [Google Scholar] [CrossRef]
- Đulović, A.; Usanović, K.; Kukoč Modun, L.; Blažević, I. Selenium Biofortification Effect on Glucosinolate Content of Brassica oleracea var. italic and Eruca vesicaria. Molecules 2023, 28, 7203. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- Gfeller, D.; Michielin, O.; Zoete, V. Shaping the interaction landscape of bioactive molecules. Bioinformatics 2013, 29, 3073–3079. [Google Scholar] [CrossRef] [PubMed]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [PubMed]
- Fishilevich, S.; Nudel, R.; Rappaport, N.; Hadar, R.; Plaschkes, I.; Iny Stein, T.; Rosen, N.; Kohn, A.; Twik, M.; Safran, M.; et al. GeneHancer: Genome-wide integration of enhancers and target genes in GeneCards. Database 2017, 2017, bax028. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Bi, J.-H.; Xie, M.; Zhang, H.; Shi, Z.-Q.; Guo, H.; Yin, H.-B.; Zhang, J.-N.; Xin, G.-Z.; Song, H.-P. Classification-based strategies to simplify complex traditional Chinese medicine (TCM) researches through liquid chromatography-mass spectrometry in the last decade (2011–2020): Theory, technical route and difficulty. J. Chromatogr. A 2021, 1651, 462307. [Google Scholar] [CrossRef]
- Pang, B.; Zhu, Y.; Lu, L.; Gu, F.; Chen, H. The Applications and Features of Liquid Chromatography-Mass Spectrometry in the Analysis of Traditional Chinese Medicine. Evid.-Based Complement. Altern. Med. 2016, 2016, e3837270. [Google Scholar] [CrossRef]
- Mustafa, S.; Mobashir, M. LC–MS and docking profiling reveals potential difference between the pure and crude fucoidan metabolites. Int. J. Biol. Macromol. 2020, 143, 11–29. [Google Scholar] [CrossRef]
- Shen, C.; Da, L.; Wu, Z.; Wang, Y.; Gao, S.; Tian, D.; Hu, H. Expression and Prognostic Significance of the MMP Family Molecules in Bladder Cancer. Comb. Chem. High Throughput Screen. 2021, 24, 1183–1196. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Das, A.; Barai, A.; Sen, S. MMP Secretion Rate and Inter-invadopodia Spacing Collectively Govern Cancer Invasiveness. Biophys. J. 2018, 114, 650–662. [Google Scholar] [CrossRef] [PubMed]
- Quick, M.L.; Wong, L.; Mukherjee, S.; Done, J.D.; Schaeffer, A.J.; Thumbikat, P. Th1-Th17 Cells Contribute to the Development of Uropathogenic Escherichia coli-Induced Chronic Pelvic Pain. PLoS ONE 2013, 8, e60987. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, H.; Li, N.; Chen, J.; Xu, H.; Wang, Y.; Liang, Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol. 2023, 309, 116306. [Google Scholar] [CrossRef]
- Luther, M.A. Systems pharmacology and drug repositioning—An integrated approach to metabolic diseases. J. Transl. Med. 2012, 10, A18. [Google Scholar] [CrossRef]
- Huang, C.; Zheng, C.; Li, Y.; Wang, Y.; Lu, A.; Yang, L. Systems pharmacology in drug discovery and therapeutic insight for herbal medicines. Brief. Bioinform. 2014, 15, 710–733. [Google Scholar] [CrossRef]
Type | Name |
---|---|
I | Acute bacterial prostatitis (ABP) |
II | Chronic bacterial prostatitis (CBP) |
III | Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) |
III-A | Inflammatory subtype |
III-B | Non-inflammatory subtype |
IV | Asymptomatic inflammatory prostatitis (histological prostatitis) |
No. | tR (min) | Name | Molecular Formula | m/z | Fragment Ions | Class | Reference |
---|---|---|---|---|---|---|---|
1 | 6.30 | 3,7-Di-O-glucosylkaempferol b | C27H30O16 | 609.1446[M − H]− | 446.0866, 283.0241 | Flavonoids | [13] |
2 | 7.61 | Kaempferol-3-O-sophoroside a | C27H30O16 | 609.1445[M − H]− | 429.0832, 285.0396 | Flavonoids | [14] |
3 | 9.25 | Isorhamnetin 3-O-β-D-xylopyranosyl (1→2)-β-D-glucopyranoside c | C27H30O16 | 609.1443[M − H]− | 315.0507 | Flavonoids | |
4 | 6.24 | Quercetin-3-O-D-glucoside-7-O-D-glucoside b | C27H30O17 | 625.1397[M − H]− | 463.0889, 301.0346 | Flavonoids | [15] |
5 | 10.35 | Astragalin a | C21H20O11 | 447.0917[M − H]− | 285.0403 | Flavonoids | |
6 | 11.14 | Kaempferol 7-O-glucoside b | C21H20O11 | 447.0919[M − H]− | 285.0400 | Flavonoids | [15] |
7 | 12.74 | Kaempferol 3-rhamnoside b | C21H20O10 | 431.0971[M − H]− | 285.0399 | Flavonoids | [16] |
8 | 8.66 | Isoquercetin a | C21H20O12 | 463.0864[M − H]− | 301.0365 | Flavonoids | |
9 | 6.71 | Isorhamnetin 3,7-O-di-β-D-glucopyranoside c | C28H32O18 | 639.1556[M − H]− | 476.0998, 313.0358 | Flavonoids | |
10 | 7.11 | Isorhamnetin 3-O-sophoroside c | C28H32O18 | 639.1554[M − H]− | 315.0505 | Flavonoids | |
11 | 6.97 | Quercetin 3-O-β-D-glucopyranosyl-(2→1)-O-β-D-xylopyranoside c | C26H28O16 | 595.1284[M − H]− | 301.0351 | Flavonoids | |
12 | 12.14 | Kaempferol 3-O-(6″-O-malonyl) glucoside c | C24H22O14 | 533.0919[M − H]− | 285.0410 | Flavonoids | |
13 | 13.04 | Isorhamnetin-3-O-rhamnoside b | C22H22O11 | 461.1072[M − H]− | 315.0553 | Flavonoids | [17] |
14 | 10.73 | Isorhamnetin-3-O-glucoside b | C22H22O12 | 477.1022[M − H]− | 315.0503 | Flavonoids | [18] |
15 | 8.13 | Kaempferol 3-O-α-L-arabinopyranosyl-(1‴→6″)-β-D-glucopyranoside c | C26H28O15 | 579.1337[M − H]− | 285.0396 | Flavonoids | |
16 | 8.87 | 3-O-[β-D-xylopyranosyl-(1→2)-β-D-glucopyranosyl]-kaempferol c | C26H28O15 | 579.1332[M − H]− | 285.0402 | Flavonoids | |
17 | 8.84 | Kaempferol-3-rutinoside b | C27H30O15 | 593.1495[M − H]− | 285.0394 | Flavonoids | [19] |
18 | 9.03 | Isorhamnetin 3-O-neohesperidoside b | C28H32O16 | 623.1670[M − H]− | 315.0517 | Flavonoids | [20] |
19 | 9.11 | Kaempferol 3-O-β-D-(2-O-β-D-6-O-acetylglucosyl)-glucopyranoside c | C29H32O17 | 651.1540[M − H]− | 285.0373 | Flavonoids | |
20 | 16.95 | Naringenin a | C15H12O5 | 271.0611[M − H]− | 151.0039 | Flavonoids | |
21 | 15.27 | Quercetol a | C15H10O6 | 301.0334[M − H]− | 151.0035, 178.9968 | Flavonoids | |
22 | 19.58 | Isorhamnetin b | C16H12O7 | 315.0500[M − H]− | 151.0048, 300.0267 | Flavonoids | [16] |
23 | 5.14 | N1, N10-bis (p-coumaroyl) spermidine c | C25H31N3O4 | 436.2228[M − H]− | 119.0503, 145.0289 | Phenylpropionamides | |
24 | 8.08 | N5, N14-dicoumaroyl-N1-caffeoylspermidine c | C37H44N4O7 | 655.3122[M − H]− | 135.0458 | Phenylpropionamides | |
25 | 8.67 | N10, N14-dicoumaroyl-N1-caffeoylspermidine c | C37H44N4O7 | 655.3120[M − H]− | 135.0451 | Phenylpropionamides | |
26 | 15.71 | N1, N5, N10-(Z)-tri-p-coumaroylspermidinec | C34H37N3O6 | 582.2594[M − H]− | 119.0507, 145.0300 | Phenylpropionamides | |
27 | 16.35 | N1, N5-(Z)-N10-(E)-tri-p-coumaroylspermidine c | C34H37N3O6 | 582.2590[M − H]− | 119.0507, 145.0285 | Phenylpropionamides | |
28 | 16.78 | N1, N0-(E)-N5-(Z)-tri-p-coumaroylspermidine c | C34H37N3O6 | 582.2589[M − H]− | 119.0521, 145.0297 | Phenylpropionamides | |
29 | 17.41 | N1, N5, N10-tri-p-coumaroylspermidine | C34H37N3O6 | 582.2593[M − H]− | 119.0503, 145.0286 | Phenylpropionamides | |
30 | 17.59 | N5, N10-dicoumaroyl-N1, N14-dicaffeoylspermidine c | C46H50N4O10 | 817.3430[M − H]− | 119.1450 | Phenylpropionamides | |
31 | 16.03 | N10-caffeoyl-N1, N5-di-p-coumaroylspermidine c | C34H37N3O7 | 598.2543[M − H]− | 119.0514, 161.0236 | Phenylpropionamides | |
32 | 18.61 | N1-N5-N10-N14-(Z)-tetra-p-coumaroylspermine c | C46H50N4O8 | 785.3542[M − H]− | 145.0292 | Phenylpropionamides | |
33 | 19.06 | N1-N14-(Z)-N5-N10(E)-tetra-p-coumaroylspermine c | C46H50N4O8 | 785.3544[M − H]− | 145.0291 | Phenylpropionamides | |
34 | 19.49 | N1-N14-(E)-N5-N10(Z)-tetra-p-coumaroylspermine c | C46H50N4O8 | 785.3540[M − H]− | 119, 145.0309 | Phenylpropionamides | |
35 | 20.14 | N1, N5, N10, N14-tetra-p-coumaroylspermine c | C46H50N4O8 | 785.3543[M − H]− | 119, 145.0286 | Phenylpropionamides | |
36 | 12.95 | N1, N5, N10-(E)-tricaffeoylspermidine | C34H37N3O9 | 630.2441[M − H]− | 135.0441, 161.0240 | Phenylpropionamides | |
37 | 12.85 | N, N′-di(coumaroyl)putrescine c | C22H24N2O4 | 379.1653[M − H]− | 119.0504, 145.0295 | Phenylpropionamides | |
38 | 4.12 | 1,2-Dilinolenoyl-sn-glycero-3-phosphocholine c | C44H76NO8P | 778.5345[M − H]+ | 184.0714 | Lipids | |
39 | 4.52 | PC-C18:3/C18:2 c | C44H78NO8P | 780.5506[M − H]+ | 184.0728 | Lipids | |
40 | 4.88 | 1-Palmitoyl-2-linoleoyl-3-sn-phosphatidylcholine c | C42H78NO8P | 756.5507[M − H]+ | 184.0719 | Lipids | |
41 | 5.04 | 1,2-Dilinoleoyl-sn-glycero-3-phosphocholine c | C44H80NO8P | 782.5666[M − H]+ | 184.0736 | Lipids | |
42 | 5.33 | Lecithin b | C42H80NO8P | 758.5665[M − H]+ | 184.0727 | Lipids | [21] |
43 | 3.58 | 5′-Uridylic acid b | C9H13N2O9P | 323.0290[M − H]− | 280.0220, 211.0015 | Nucleic acids | [22] |
44 | 9.59 | Uridine b | C9H12N2O6 | 243.0635[M − H]− | 200.0576, 152.0353, 110.0263 | Nucleic acids | [23] |
45 | 9.78 | 5′-Adenosine monophosphate b | C10H14N5O7P | 346.0563[M − H]− | 280, 211.0013, 96.9719, 78.9632 | Nucleic acids | [24] |
46 | 16.18 | Cyclic guanosine 3′,5′-monophosphate b | C10H12N5O7P | 344.0410[M − H]− | 150.0427, 133.0164 | Nucleic acids | [25] |
47 | 19.15 | Adenosine 3′,5′-cyclic monophosphate b | C10H12N5O6P | 328.0459[M − H]− | 134.0482 | Nucleic acids | [25] |
48 | 5.63 | Sinigrin a | C10H17NO9S2 | 358.0276[M − H]− | 96.9613 | Glucosinolates | [26] |
49 | 6.60 | Progoitrin c | C11H19NO10S2 | 388.0386[M − H]− | 96.9625 | Glucosinolates | |
50 | 8.92 | Gluconapin b | C11H19NO9S2 | 372.0432[M − H]− | 96.9634 | Glucosinolates | [27] |
51 | 9.3 | Glucoraphanin b | C12H23NO10S3 | 436.0415[M − H]− | 96.9621 | Glucosinolates | [28] |
52 | 11.83 | Glucoalyssin b | C13H25NO10S3 | 450.0570[M − H]− | 386.0626,96.9633 | Glucosinolates | [29] |
53 | 20.6 | Gluconasturtiin b | C15H21NO9S2 | 422.0588[M − H]− | 96.9623 | Glucosinolates | [30] |
Data Type | Chemical Compound Type | Total | ||||
---|---|---|---|---|---|---|
Phenylpropionamides | Nucleic Acids | Glucosinolates | Flavonoids | Lipids | ||
Chemical composition | 15 | 6 | 5 | 22 | 5 | 53 |
Target | 72 | 89 | 36 | 175 | 16 | 327 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuge, H.; Ge, Z.; Wang, J.; Yao, J.; He, J.; Wang, Y.; Wang, Y.; Tang, Y. The Tandem of Liquid Chromatography and Network Pharmacology for the Chemical Profiling of Pule’an Tablets and the Prediction of Mechanism of Action in Treating Prostatitis. Pharmaceuticals 2024, 17, 56. https://doi.org/10.3390/ph17010056
Zhuge H, Ge Z, Wang J, Yao J, He J, Wang Y, Wang Y, Tang Y. The Tandem of Liquid Chromatography and Network Pharmacology for the Chemical Profiling of Pule’an Tablets and the Prediction of Mechanism of Action in Treating Prostatitis. Pharmaceuticals. 2024; 17(1):56. https://doi.org/10.3390/ph17010056
Chicago/Turabian StyleZhuge, Hui, Zhiwei Ge, Jiaojiao Wang, Jianbiao Yao, Jiayu He, Yi Wang, Yingchao Wang, and Yu Tang. 2024. "The Tandem of Liquid Chromatography and Network Pharmacology for the Chemical Profiling of Pule’an Tablets and the Prediction of Mechanism of Action in Treating Prostatitis" Pharmaceuticals 17, no. 1: 56. https://doi.org/10.3390/ph17010056
APA StyleZhuge, H., Ge, Z., Wang, J., Yao, J., He, J., Wang, Y., Wang, Y., & Tang, Y. (2024). The Tandem of Liquid Chromatography and Network Pharmacology for the Chemical Profiling of Pule’an Tablets and the Prediction of Mechanism of Action in Treating Prostatitis. Pharmaceuticals, 17(1), 56. https://doi.org/10.3390/ph17010056