Natural Products and Bioactive Compounds for the Prevention and Treatment of Non-Communicable Chronic Diseases

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Natural Products".

Deadline for manuscript submissions: 26 April 2026 | Viewed by 547

Special Issue Editor


E-Mail Website
Guest Editor
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Campus Itajaí, Rua Uruguai 458, Centro, Santa Catarina CEP 88302-901, Brazil
Interests: natural products; bioactive compounds; kidney disease; hypertension; cardiovascular disease
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Non-communicable chronic diseases (NCDs) such as cardiovascular diseases, diabetes, and metabolic syndrome are responsible for the majority of premature deaths worldwide and pose major social and economic burdens, particularly in low- and middle-income countries. Natural products, including isolated phytochemicals, standardized plant extracts, and functional foods, continue to be an essential source of innovative therapeutic agents and health-promoting compounds for the management and prevention of NCDs.

This Special Issue aims to gather original research articles and comprehensive reviews focusing exclusively on natural products with demonstrated or potential applications in controlling NCDs. We welcome contributions covering all stages of development, from ethnopharmacological surveys and chemical characterization to preclinical and clinical evaluations, mechanisms of action, safety, and quality control. Manuscripts exploring emerging technologies for the isolation, standardization, and bioavailability improvement of natural compounds are also encouraged.

Topics of Interest include (but are not limited to)

  • The discovery and characterization of new bioactive natural compounds targeting NCDs;
  • Mechanistic studies on the effects of phytochemicals in inflammation, oxidative stress, and metabolic pathways of NCDs;
  • Synergistic effects and combination strategies involving plant-derived compounds;
  • Standardization, quality assurance, and regulatory challenges of natural products;
  • Translational research linking traditional knowledge with modern pharmacology.

Dr. Priscila de Souza
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • phytochemicals
  • chronic diseases
  • functional foods
  • herbal medicine
  • non-communicable diseases
  • ethnopharmacology
  • bioactivity

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

34 pages, 4740 KB  
Article
In Silico Design and Computational Elucidation of Hypothetical Resveratrol–Curcumin Hybrids as Potential Cancer Pathway Modulators
by Nil Sazlı and Deniz Karataş
Pharmaceuticals 2025, 18(10), 1473; https://doi.org/10.3390/ph18101473 - 30 Sep 2025
Viewed by 421
Abstract
Background/Objectives: Cancer progression is characterized by the suppression of apoptosis, activation of metastatic processes, and dysregulation of cell proliferation. The proper functioning of these mechanisms relies on critical signaling pathways, including Phosphoinositide 3-kinase/Protein kinase B/mammalian Target of Rapamycin (PI3K/Akt/mTOR), Mitogen-Activated Protein Kinase (MAPK), [...] Read more.
Background/Objectives: Cancer progression is characterized by the suppression of apoptosis, activation of metastatic processes, and dysregulation of cell proliferation. The proper functioning of these mechanisms relies on critical signaling pathways, including Phosphoinositide 3-kinase/Protein kinase B/mammalian Target of Rapamycin (PI3K/Akt/mTOR), Mitogen-Activated Protein Kinase (MAPK), and Signal Transducer and Activator of Transcription 3 (STAT3). Although curcumin and resveratrol exhibit anticancer properties and affect these pathways, their pharmacokinetic limitations, including poor bioavailability and low solubility, restrict their clinical application. The aim of our study was to evaluate the synergistic anticancer potential of curcumin and resveratrol through hybrid molecules rationally designed from these compounds to mitigate their pharmacokinetic limitations. Furthermore, we analyzed the multi-target anticancer effects of these hybrids on the AKT serine/threonine kinase 1 (AKT1), MAPK, and STAT3 pathways using in silico molecular modeling approaches. Methods: Three hybrid molecules, including a long-chain (ELRC-LC) and a short-chain (ELRC-SC) hybrid, an ester-linked hybrid, and an ether-linked hybrid (EtLRC), were designed using the Avogadro software (v1.2.0), and their geometry optimization was carried out using Density Functional Theory (DFT). The electronic properties of the structures were characterized through Frontier Molecular Orbital (FMO), Molecular Electrostatic Potential (MEP), and Fourier Transform Infrared (FTIR) analyses. The binding energies of the hybrid molecules, curcumin, resveratrol, their analogs, and the reference inhibitor were calculated against the AKT1, MAPK, and STAT3 receptors using molecular docking. The stabilities of the best-fitting complexes were evaluated through 100 ns molecular dynamics (MD) simulations, and their binding free energies were estimated using the Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) method. Results: DFT analyses demonstrated stable electronic characteristics for the hybrids. Molecular docking analyses revealed that the hybrids exhibited stronger binding compared to curcumin and resveratrol. The binding energy of −11.4 kcal/mol obtained for the ELRC-LC hybrid against AKT1 was particularly remarkable. Analysis of 100 ns MD simulations confirmed the conformational stability of the hybrids. Conclusions: Hybrid molecules have been shown to exert multi-target mechanisms of action on the AKT1, MAPK, and STAT3 pathways, and to represent potential anticancer candidates capable of overcoming pharmacokinetic limitations. Our in silico-based study provides data that will guide future in vitro and in vivo studies. These rationally designed hybrid molecules, owing to their receptor affinity, may serve as de novo hybrid inhibitors. Full article
Show Figures

Figure 1

Back to TopTop