You are currently viewing a new version of our website. To view the old version click .

Nanomaterials

Nanomaterials is an international, interdisciplinary, peer-reviewed, open access journal published semimonthly online by MDPI, and that publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials with respect to their science and applications.
The Spanish Carbon Group (GEC) and The Chinese Society of Micro-Nano Technology (CSMNT) are affiliated with Nanomaterials and their members receive discounts on the article processing charges.
Indexed in PubMed | Quartile Ranking JCR - Q2 (Physics, Applied | Chemistry, Multidisciplinary | Materials Science, Multidisciplinary | Nanoscience and Nanotechnology)

All Articles (21,551)

Metal oxide semiconductor (MOS)-based chemiresistive gas sensors, attributable to their low cost, compact structure, and long operational lifetime, have been widely employed for the detection and monitoring of trace ozone (O3) in environmental air. Moreover, as ozone is a highly reactive oxidizing species extensively used in medical device sterilization, hospital disinfection, and food processing and preservation, accurate monitoring of ozone concentration is also essential in medical sanitation and food safety inspection. However, their practical applications are often limited by insufficient sensitivity and the requirement for elevated operating temperatures. In this study, Au-modified indium oxide (Au-In2O3) nanocomposite sensing materials were synthesized via a hydrothermal route followed by surface modification. Structural and morphological characterizations confirmed the uniform dispersion of Au nanoparticles on the In2O3 surface, which is expected to enhance the interaction between the sensor and target gas molecules. The resulting Au-In2O3 sensor exhibited excellent O3 sensing performance under room-temperature conditions. Compared with pristine In2O3, the Au-In2O3 sensor with 1.0 wt% Au modification demonstrated a remarkably enhanced response of 1398.4 toward 1 ppm O3 at room temperature. Moreover, the corresponding response/recovery times were shortened to 102/358 s for Au-In2O3. The outstanding O3 sensing performance can be attributed to the synergistic effects of Au nanoparticles, including the spillover effect and the formation of a Schottky junction at the Au-In2O3 interface. These results suggest that Au-modified In2O3 cauliflower represents a highly promising candidate material for high performance O3 sensing at low operating temperatures.

30 December 2025

(a) Schematic of synthesis of Au-In2O3 cauliflower. (b,c) SEM images, (d) TEM image, and (e) high-resolution TEM (HRTEM) image of the Au-1.0 sample.

The electrical performance of polymer nanocomposites strongly depends on the morphology of nanofillers and the structure of the resulting conductive networks. To elucidate the mechanisms governing conductive network formation in multi-morphology nanofiller systems, a ternary coarse-grained model composed of rod-, Y-, and X-shaped nanofillers is constructed. The effects of nanofiller volume fraction (VF) and nanofiller composition ratios on percolation behavior are systematically investigated. By incorporating an efficient cKDTree-based neighbor search method, conductive networks are identified and their topological characteristics are quantified with high computational efficiency. The results demonstrate that nanofiller morphology ratios play a crucial role in controlling local structural evolution and the percolation threshold. Statistical analyses of the main cluster size (MCs) and the number of clusters (Nc) further reveal the synergistic and competitive effects among different filler morphologies. The combination of filler morphologies is shown to be a key factor in determining the percolation threshold and network topology. The multi-morphology simulation framework together with structural characterization approach proposed in this work provide theoretical guidance for the rational design of high-performance conductive polymer nanocomposites.

30 December 2025

A 5 nm thick polycrystalline Ni81Fe19 film was sputter-deposited onto a circular 3-inch diameter, 390 μm thick single-crystal wafer with SiO2 surface layers. The magnetoresistance (MR) of the sample was analyzed as a function of applied DC magnetic field and temperature using the Van der Pauw technique. Magnetic measurements were carried out over a temperature range of 25 °C to 350 °C using a Lake Shore Hall Effect Measurement System (HEMS). An external magnetic field ranging from to was applied at each temperature value to observe changes in resistance. Hall coefficients and resistance were obtained by applying current in both directions with different contact configurations. Machine learning techniques, including Random Forest Regression, were employed to predict magnetoresistivity beyond 350 °C; the best-performing model achieved R2 values up to 0.9449 with MSE as low as 0.0071, and enabled Curie temperature estimation with . This study highlights the potential of machine learning in accurately forecasting material properties beyond experimental limits, providing enhanced predictive models for the magnetoresistive behavior and critical temperature transitions of Ni81Fe19 .

30 December 2025

The selective hydrogenation of phenol to cyclohexanone is a pivotal reaction for producing nylon precursors. Conventional Pd/C catalysts, however, suffer from weak metal–support interactions, leading to size heterogeneity and agglomeration of Pd nanoparticles, which degrades their activity and stability. Herein, we report a facile argon plasma treatment to engineer rich defects on an activated carbon (AC) support, resulting in a highly dispersed and stable catalyst (denoted as PL-Pd@ACAr). Characterization results indicate that the abundant carbon defects in PL-Pd@ACAr enhance the anchoring of Pd precursors, ensure the uniform dispersion of Pd nanoparticles, and effectively modulate their electronic structure. Consequently, the plasma-enabled PL-Pd@ACAr catalyst achieves 99.9% phenol conversion with 97% selectivity to cyclohexanone at a mild temperature of 70 °C and maintains exceptional stability over six consecutive cycles. This work provides a robust and efficient strategy for the surface engineering of carbon supports to design high-performance hydrogenation catalysts.

29 December 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Design and Applications of Heterogeneous Nanostructured Materials
Reprint

Design and Applications of Heterogeneous Nanostructured Materials

Editors: Hongbo Ju, Bingyang Ma, Manuel António Peralta Evaristo, Jicheng Ding, Filipe Daniel Fernandes
Synthesis and Application of Nanoparticles in Novel Composites
Reprint

Synthesis and Application of Nanoparticles in Novel Composites

Editors: Edgar O'Rear, Fernando Esteban Florez

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Nanomaterials - ISSN 2079-4991