Nano-Biotechnology in Soil Remediation: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance
Abstract
1. Introduction
2. Nanomaterials in Soil Remediation: Mechanisms and Applications
2.1. Contaminant Removal Strategies
2.1.1. Adsorption and Immobilization
2.1.2. Catalytic Degradation
2.2. Nutrient Delivery and Soil Health Enhancement
2.2.1. Nanofertilizers
2.2.2. Role of Nanomaterials in Improving Soil Structure, Water Retention, and Microbial Activity
3. Nanomaterials in Promoting Plant Growth
3.1. Enhanced Nutrient Uptake and Efficiency
3.2. Phytohormone Modulation and Root Development
3.3. Photosynthesis and Biomass Production
4. Nanomaterials in Enhancing Plant Stress Tolerance
4.1. Abiotic Stress Mitigation
4.2. Biotic Stress Resistance
4.3. Oxidative Stress Alleviation
5. Environmental and Safety Considerations
5.1. Ecotoxicity and Long-Term Impacts
5.2. Regulatory Frameworks and Risk Assessment
5.3. Biodegradability and Sustainable Design
6. Challenges and Future Perspectives
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, G.; Xing, J. The Present Situation of Soil Pollution in Agricultural Production and the Countermeasures. IOP Conf. Ser. Earth Environ. Sci. 2020, 512, 012001. [Google Scholar] [CrossRef]
- FAO. Soil Pollution—A Hidden Reality; FAO: Rome, Italy, 2018. [Google Scholar]
- FAO. Status of the World’s Soil Resources; Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Prăvălie, R.; Necula, N.; Borrelli, P.; Tişcovschi, A.; Săvulescu, I. A Complex Spatial Inventory of Land Degradation and Desertification in Romania. Ecol. Indic. 2025, 176, 113671. [Google Scholar] [CrossRef]
- FAO; UNEP. Global Assessment of Soil Pollution: Summary for Policymakers; Food and Agriculture Organization: Rome, Italy, 2021. [Google Scholar]
- He, S.; Wei, Y.; Yang, C.; He, Z. Interactions of Microplastics and Soil Pollutants in Soil-Plant Systems. Environ. Pollut. 2022, 315, 120357. [Google Scholar] [CrossRef] [PubMed]
- Sharifmand, M.; Sepehr, E.; Rasouli-Sadaghiani, M.; Asri-Rezaei, S.; Rengel, Z. Antibiotics Pollutants in Agricultural Soil: Kinetic, Sorption, and Thermodynamic of Ciprofloxacin. Heliyon 2024, 10, e37035. [Google Scholar] [CrossRef]
- Aghili, S.; Golzary, A. Greening the Earth, Healing the Soil: A Comprehensive Life Cycle Assessment of Phytoremediation for Heavy Metal Contamination. Environ. Technol. Innov. 2023, 32, 103241. [Google Scholar] [CrossRef]
- Wei, K.H.; Ma, J.; Xi, B.D.; Yu, M.D.; Cui, J.; Chen, B.L.; Li, Y.; Gu, Q.B.; He, X.S. Recent Progress on In-Situ Chemical Oxidation for the Remediation of Petroleum Contaminated Soil and Groundwater. J. Hazard. Mater. 2022, 432, 128738. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, M.; Chen, L.; Gong, Z.; Hu, J.; Ma, D. Electrokinetic Remediation for the Removal of Heavy Metals in Soil: Limitations, Solutions and Prospection. Sci. Total Environ. 2023, 903, 165970. [Google Scholar] [CrossRef]
- Wu, P.; Wu, X.; Wang, Y.; Xu, H.; Owens, G. Towards Sustainable Saline Agriculture: Interfacial Solar Evaporation for Simultaneous Seawater Desalination and Saline Soil Remediation. Water Res. 2022, 212, 118099. [Google Scholar] [CrossRef]
- Nair, R.R.; Russel, J.G.; Pradeep, S.; Ajay, S.V.; Krishnakumar, B. A Novel Ex-Situ Bio-Remediation Process for Perchlorate Contaminated Soil. Chemosphere 2020, 247, 125947. [Google Scholar] [CrossRef]
- Ren, J.; Song, X.; Ding, D. Sustainable Remediation of Diesel-Contaminated Soil by Low Temperature Thermal Treatment: Improved Energy Efficiency and Soil Reusability. Chemosphere 2020, 241, 124952. [Google Scholar] [CrossRef]
- Basta, N.T.; McGowen, S.L. Evaluation of Chemical Immobilization Treatments for Reducing Heavy Metal Transport in a Smelter-Contaminated Soil. Environ. Pollut. 2004, 127, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Zhang, L.; Dong, P.; Wang, J.; Shi, L.; Lian, C.; Shen, Z.; Chen, Y. Remediation of Copper-Contaminated Soils Using Tagetes patula L., Earthworms and Arbuscular Mycorrhizal Fungi. Int. J. Phytoremediation 2022, 24, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Li, F.; Yi, S.; Ge, F. Genetically Engineered Microbial Remediation of Soils Co-Contaminated by Heavy Metals and Polycyclic Aromatic Hydrocarbons: Advances and Ecological Risk Assessment. J. Environ. Manag. 2021, 296, 113185. [Google Scholar] [CrossRef] [PubMed]
- Hrapovic, L.; Sleep, B.E.; Major, D.J.; Hood, E.D. Laboratory Study of Treatment of Trichloroethene by Chemical Oxidation Followed by Bioremediation. Hood Environ. Sci. Technol. 2005, 39, 2888–2897. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Y.; Zheng, X.; Zhu, K.; Long, A.; Wu, X.; Zhang, H. Remediation of Phenanthrene Contaminated Soil by Coupling Soil Washing with Tween 80, Oxidation Using the UV/S2O82− Process and Recycling of the Surfactant. Chem. Eng. J. 2019, 369, 1014–1023. [Google Scholar] [CrossRef]
- Guan, C.; Fu, W.; Zhang, X.; Li, Z.; Zhu, Y.; Chen, F.; Ji, J.; Wang, G.; Gao, X. Enhanced Phytoremediation Efficiency of PHE-Contaminated Soil by Rape (Brassica napus L.) Assisted with PHE-Degradable PGPR through Modulating Rhizobacterial Communities. Ind. Crops Prod. 2023, 202, 117057. [Google Scholar] [CrossRef]
- Cao, M.; Lv, W.; Wang, F.; Ma, S.; Geng, H.; Li, J.; Gao, Z.; Xu, Q.; Guo, J.; Leng, W.; et al. Foliar Application of Zinc Oxide Nanoparticles Alleviates Phenanthrene and Cadmium-Induced Phytotoxicity in Lettuce: Regulation of Plant–Rhizosphere–Microbial Long Distance. Environ. Sci. Technol. 2024, 59, 730–743. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Mittler, R.; Vanderauwera, S.; Suzuki, N.; Miller, G.A.D.; Tognetti, V.B.; Vandepoele, K.; Golley, M.; Shulaev, V.; Breusegem, F.V. ROS Signaling: The New Wave? Trends Plant Sci. 2011, 16, 300–309. [Google Scholar] [CrossRef]
- Shah, F.; Huang, J.; Cui, K.; Nie, L.; Shah, T.; Chen, C.; Wang, K. Impact of High-Temperature Stress on Rice Plant and Its Traits Related to Tolerance. J. Agric. Sci. 2011, 149, 545–556. [Google Scholar] [CrossRef]
- Li, P.; Liu, Z.; Zhou, X.; Xie, B.; Li, Z.; Luo, Y.; Zhu, Q.; Peng, C. Combined Control of Multiple Extreme Climate Stressors on Autumn Vegetation Phenology on the Tibetan Plateau under Past and Future Climate Change. Agric. For. Meteorol. 2021, 308–309, 108571. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, B.; Wu, W.; Wang, C.; Cheng, H.; Duan, X. Enhanced Health Risk of Soil Heavy Metal Exposure Following an Extreme Rainstorm under Climate Change. Sci. Total Environ. 2024, 954, 176409. [Google Scholar] [CrossRef]
- Knight, C.G.; Nicolitch, O.; Griffiths, R.I.; Goodall, T.; Jones, B.; Weser, C.; Langridge, H.; Davison, J.; Dellavalle, A.; Eisenhauer, N.; et al. Soil Microbiomes Show Consistent and Predictable Responses to Extreme Events. Nature 2024, 636, 690–696. [Google Scholar] [CrossRef]
- Kumar, A.; Bhattacharya, T.; Mukherjee, S.; Sarkar, B. A Perspective on Biochar for Repairing Damages in the Soil–Plant System Caused by Climate Change-Driven Extreme Weather Events. Biochar 2022, 4, 22. [Google Scholar] [CrossRef]
- Aguirre-Becerra, H.; Feregrino-Pérez, A.A.; Esquivel, K.; Perez-Garcia, C.E.; Vazquez-Hernandez, M.C.; Mariana-Alvarado, A. Nanomaterials as an Alternative to Increase Plant Resistance to Abiotic Stresses. Front. Plant Sci. 2022, 13, 1023636. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, M.; Zhang, H.; Li, R. Zinc Oxide Nanoparticles Alleviate Chilling Stress in Rice (Oryza sativa L.) by Regulating Antioxidative System and Chilling Response Transcription Factors. Molecules 2021, 26, 2196. [Google Scholar] [CrossRef]
- Rajput, V.D.; Kumari, A.; Upadhyay, S.K.; Minkina, T.; Mandzhieva, S.; Ranjan, A.; Sushkova, S.; Burachevskaya, M.; Rajput, P.; Konstantinova, E.; et al. Can Nanomaterials Improve the Soil Microbiome and Crop Productivity? Agriculture 2023, 13, 231. [Google Scholar] [CrossRef]
- Zhang, Y. Nanobiotechnology; Science Press: Beijing, China, 2005. [Google Scholar]
- Ali, A.; Kamran, A. Nanobiotechnology in Health Sciences: Current Applications to Future Perspectives. Biol. Clin. Sci. Res. J. 2024, 5, 811. [Google Scholar] [CrossRef]
- Chang, C.; Guo, W.; Yu, X.; Guo, C.; Zhou, N.; Guo, X.; Huang, R.-L.; Li, Q.; Zhu, Y. Engineered M13 Phage as a Novel Therapeutic Bionanomaterial for Clinical Applications: From Tissue Regeneration to Cancer Therapy. Mater. Today Biol. 2023, 20, 100612. [Google Scholar] [CrossRef] [PubMed]
- Nabil, M.; Megahed, F. Quantum Dot Nanomaterials: Preparation, Characterization, Advanced Bio-Imaging and Therapeutic Applications. J. Fluoresc. 2023, 34, 2467–2484. [Google Scholar] [CrossRef]
- Wu, P.; Luo, X.; Sun, M.; Sun, B.; Sun, M. Synergetic Regulation of Kupffer Cells, Extracellular Matrix and Hepatic Stellate Cells with Versatile CXCR4-Inhibiting Nanocomplex for Magnified Therapy in Liver Fibrosis. Biomaterials 2022, 284, 121492. [Google Scholar] [CrossRef]
- Singh, M.; Goswami, S.P.; Ranjitha, G.; Sachan, P.; Sahu, D.K.; Beese, S.; Pandey, S.K. Nanotech for Fertilizers and Nutrients-Improving Nutrient Use Efficiency with Nano-Enabled Fertilizers. J. Exp. Agric. Int. 2024, 46, 220–247. [Google Scholar] [CrossRef]
- Javaid, A.; Hameed, S.; Li, L.; Zhang, Z.; Zhang, B.; Rahman, M. Can Nanotechnology and Genomics Innovations Trigger Agricultural Revolution and Sustainable Development? Funct. Integr. Genom. 2024, 24, 216. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Kang, M.S.; Raja, I.S.; Oh, J.-W.; Joung, Y.K.; Han, D.-W. Current Issues and Perspectives in Nanosensors-Based Artificial Olfactory Systems for Breath Diagnostics and Environmental Exposure Monitoring. TrAC Trends Anal. Chem. 2024, 174, 117656. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, Z.; Wang, H.; Meng, H.; Cao, Y. Mesoporous Silica Nanoparticles Mediate SiRNA Delivery for Long-Term Multi-Gene Silencing in Intact Plants. Adv. Sci. 2023, 11, 2301358. [Google Scholar] [CrossRef]
- Tamta, S.; Vimal, V.; Verma, S.; Gupta, D.; Verma, D.; Nangan, S. Recent Development of Nanobiomaterials in Sustainable Agriculture and Agrowaste Management. Biocatal. Agric. Biotechnol. 2024, 56, 103050. [Google Scholar] [CrossRef]
- Andrade-Zavaleta, K.; Chacon-Laiza, Y.; Asmat-Campos, D.; Raquel-Checca, N. Green Synthesis of Superparamagnetic Iron Oxide Nanoparticles with Eucalyptus globulus Extract and Their Application in the Removal of Heavy Metals from Agricultural Soil. Molecules 2022, 27, 1367. [Google Scholar] [CrossRef]
- Sułowicz, S.; Markowicz, A.; Dulski, M.; Nowak, A.; Środek, D.; Borymski, S. Assessment of the Ecotoxicological Impact of Captan@ZnO35–45nm and Captan@SiO2 20–30nm Nanopesticide on Non-Target Soil Microorganisms—A 100-Day Case Study. Appl. Soil Ecol. 2023, 184, 104789. [Google Scholar] [CrossRef]
- Sun, C.; Hu, K.; Mu, D.; Wang, Z.; Yu, X. The Widespread Use of Nanomaterials: The Effects on the Function and Diversity of Environmental Microbial Communities. Microorganisms 2022, 10, 2080. [Google Scholar] [CrossRef]
- Hou, J.; Hu, C.; White, J.C.; Yang, K.; Zhu, L.; Lin, D. Nano–Zoo Interfacial Interaction as a Design Principle for Hybrid Soil Remediation Technology. ACS Nano 2021, 15, 14954–14964. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, T.; White, J.C.; Lin, D. A New Strategy Using Nanoscale Zero-Valent Iron to Simultaneously Promote Remediation and Safe Crop Production in Contaminated Soil. Nat. Nanotechnol. 2020, 16, 197–205. [Google Scholar] [CrossRef]
- Sodhi, G.K.; Wijesekara, T.; Kumawat, K.C.; Adhikari, P.; Joshi, K.; Singh, S.; Farda, B.; Djebaili, R.; Sabbi, E.; Ramila, F.; et al. Nanomaterials–Plants–Microbes Interaction: Plant Growth Promotion and Stress Mitigation. Front. Microbiol. 2025, 15, 1516794. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Xiao, C.; Zhu, L.; Deng, W.; Zhang, Y.; Li, Y.; Wu, X.; Wu, H.; Xu, H.; Jia, J. GABA-Decorated Nanocarrier for Smart Delivery of Fludioxonil for Targeted Control of Banana Wilt Disease. J. Agric. Food Chem. 2024, 72, 26664–26676. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, H.; Li, Z.; Cui, Z.; Ma, G.; Nassor, A.K.; Guan, Y.; Pan, X. Multi-Stimuli-Responsive Pectin-Coated Dendritic Mesoporous Silica Nanoparticles with Eugenol as a Sustained Release Nanocarrier for the Control of Tomato Bacterial Wilt. J. Nanobiotechnology 2025, 23, 191. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wang, Y.; Liu, S.; Zheng, Z.; He, C.; Yao, W.; Zhang, C.; Gu, Y.; Gao, Y.; Du, F. Facile-Prepared Size-Controllable Nanogels for Enhancing Bidirectional Translocation, Control Efficiency, and Security of Nanopesticide. Adv. Funct. Mater. 2024, 34, 2410555. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z. Nano-Enabled Agriculture: How Do Nanoparticles Cross Barriers in Plants? Plant Commun. 2022, 3, 100346. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, C.; Huang, Q.; Cao, L.; Teng, F.; Zhao, P.; Jia, M. Size Effect of Mesoporous Silica Nanoparticles on Pesticide Loading, Release, and Delivery in Cucumber Plants. Appl. Sci. 2021, 11, 575. [Google Scholar] [CrossRef]
- Lu, Z.; Li, Y.; Chen, K.; Chai, S.; Su, G.; Wu, C.; Sun, M.; Wang, Y.; Feng, S.; Hao, M.; et al. Multi-Activity Ferruginated Carbon Quantum Dots Nanozyme Improves Wheat Seedling Growth and Cd Tolerance. Crop J. 2025, 13, 510–523. [Google Scholar] [CrossRef]
- Bueno, V.; Gao, X.; Abdul Rahim, A.; Wang, P.; Bayen, S.; Ghoshal, S. Uptake and Translocation of a Silica Nanocarrier and an Encapsulated Organic Pesticide Following Foliar Application in Tomato Plants. Environ. Environ. Sci. Technol. 2022, 56, 6722–6732. [Google Scholar] [CrossRef]
- Haydar, M.S.; Ali, S.; Mandal, P.; Roy, D.; Roy, M.N.; Kundu, S.; Kundu, S.; Choudhuri, C. Iron-Manganese Nanocomposites Doped Graphene Quantum Dots as Growth Promoter of Wheat and Its Biomimetic Activity. Biologia 2023, 78, 2701–2716. [Google Scholar] [CrossRef]
- Haider, Z.; Yang, C.; Ahmad, I.; Zia, S.; Javaid, M.H.; Rehman, M.; Yasin, M.U.; Ali, B.; Nana, C.; Gan, Y. Bioderived Carbon Quantum Dots Boost Maize Growth and Photosynthesis by Augmenting UV Spectrum Absorption and Carbon Assimilation Regulatory Genes. J. Environ. Chem. Eng. 2024, 12, 114396. [Google Scholar] [CrossRef]
- Ali, S.; Ahmad, N.; Dar, M.A.; Manan, S.; Rani, A.; Alghanem, S.M.S.; Khan, K.A.; Sethupathy, S.; Elboughdiri, N.; Mostafa, Y.S.; et al. Nano-Agrochemicals as Substitutes for Pesticides: Prospects and Risks. Plants 2023, 13, 109. [Google Scholar] [CrossRef]
- Luo, J.; Gao, Y.; Liu, Y.; Huang, X.; Zhang, D.; Cao, H.; Jing, T.; Liu, F.; Li, B. Self-Assembled Degradable Nanogels Provide Foliar Affinity and Pinning for Pesticide Delivery by Flexibility and Adhesiveness Adjustment. ACS Nano 2021, 15, 14598–14609. [Google Scholar] [CrossRef] [PubMed]
- Hussain, B.; Yin, X.; Lin, Q.; Hamid, Y.; Usman, M.; Hashmi, M.L.-R.; Lu, M.; Imran Taqi, M.; He, Z.; Yang, X. Mitigating Cadmium Exposure Risk in Rice with Foliar Nano-Selenium: Investigations through Caco-2 Human Cell Line In-Vivo Bioavailability Assay. Environ. Pollut. 2024, 356, 124356. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Yuan, H.; Sun, S.; Feng, J.; Shi, N.; Wang, Z.; Liang, Y.; Ying, Y.; Wang, Y. Machine Learning-Powered Activatable NIR-II Fluorescent Nanosensor for In Vivo Monitoring of Plant Stress Responses. Nat. Commun. 2025, 16, 5114. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Shahnaz, T.; Masoodi, J.H.; Nazir, S.; Qurashi, A.; Ahmed, G.H. Application of Nanotechnology in the Agricultural and Food Processing Industries: A Review. Sustain. Mater. Technol. 2024, 39, e00809. [Google Scholar] [CrossRef]
- Gong, X.; Huang, D.; Liu, Y.; Peng, Z.; Zeng, G.; Xu, P.; Cheng, M.; Wang, R.; Wan, J. Remediation of Contaminated Soils by Biotechnology with Nanomaterials: Bio-Behavior, Applications, and Perspectives. Crit. Rev. Biotechnol. 2017, 38, 455–468. [Google Scholar] [CrossRef]
- Fu, T.; Zhang, B.; Gao, X.; Cui, S.; Guan, C.-Y.; Zhang, Y.; Zhang, B.; Peng, Y. Recent Progresses, Challenges, and Opportunities of Carbon-Based Materials Applied in Heavy Metal Polluted Soil Remediation. Sci. Total Environ. 2023, 856, 158810. [Google Scholar] [CrossRef]
- Zhong, X.; Lai, Y.; Wang, X.; Wang, M.; Han, W.; Zhang, M.; Ji, H. Synthesis and Environmental Applications of Biochar-Supported Nano-Zero-Valent Iron Composites: A Review. Environ. Chem. Lett. 2024, 22, 1345–1363. [Google Scholar] [CrossRef]
- Xie, R.; Jin, Y.; Chen, Y.; Jiang, W. The Importance of Surface Functional Groups in the Adsorption of Copper onto Walnut Shell Derived Activated Carbon. Water Sci. Technol. 2017, 76, 3022–3034. [Google Scholar] [CrossRef]
- Mazarji, M.; Bayero, M.T.; Minkina, T.; Sushkova, S.; Mandzhieva, S.; Bauer, T.V.; Soldatov, A.; Sillanpää, M.; Wong, M.H. Nanomaterials in Biochar: Review of Their Effectiveness in Remediating Heavy Metal-Contaminated Soils. Sci. Total Environ. 2023, 880, 163330. [Google Scholar] [CrossRef]
- Polyakov, V.; Bauer, T.; Kirichkov, M.; Butova, V.; Gritsai, M.; Minkina, T.; Soldatov, A.; Kravchenko, E. MOF-Biochar Nanocomposite for Sustainable Remediation of Contaminated Soil. Environ. Sci. Pollut. Res. 2025, 32, 5533–5550. [Google Scholar] [CrossRef]
- Correia, A.A.S.; Rasteiro, M.G. Effect of Multiwall Carbon Nanotubes and Surfactants Characteristics on Immobilization of Heavy Metals in Contaminated Soils. Discov. Appl. Sci. 2024, 6, 205. [Google Scholar] [CrossRef]
- Pandey, L.M. Surface Engineering of Nano-Sorbents for the Removal of Heavy Metals: Interfacial Aspects. J. Environ. Chem. Eng. 2021, 9, 104586. [Google Scholar] [CrossRef]
- Liu, S.; Xie, Z.; Zhu, Y.; Zhu, Y.; Jiang, Y.; Wang, Y.; Gao, H. Adsorption Characteristics of Modified Rice Straw Biochar for Zn and In-Situ Remediation of Zn Contaminated Soil. Technol. Innov. 2021, 22, 101388. [Google Scholar] [CrossRef]
- Yasmin, K.; Hossain, M.S.; Li, W.C. Simultaneous Immobilization Strategy of Anionic Metalloids and Cationic Metals in Agricultural Systems: A Review. Chemosphere 2024, 364, 143106. [Google Scholar] [CrossRef]
- Li, H.; Jiang, Q.; Li, R.; Zhang, B.; Zhang, J.; Zhang, Y. Passivation of Lead and Cerium in Soil Facilitated by Biochar-Supported Phosphate-Doped Ferrihydrite: Mechanisms and Microbial Community Evolution. J. Hazard. Mater. 2022, 436, 129090. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Wu, A. Design and Construction of Magnetic Nanomaterials and Their Remediation Mechanisms for Heavy Metal Contaminated Soil. Sci. Total Environ. 2024, 951, 175369. [Google Scholar] [CrossRef]
- Wang, X.; Hussain, A.; Li, Q.; Ma, M.; Wu, J.; Deng, M.; Yang, J.; Li, D. Core-Shell Design of UiO66-Fe3O4 Configured with EDTA-Assisted Washing for Rapid Adsorption and Simple Recovery of Heavy Metal Pollutants from Soil. J. Environ. Sci. 2024, 139, 556–568. [Google Scholar] [CrossRef]
- Rahman, A.; Wang, W.; Govindaraj, D.; Kang, S.; Vikesland, P.J. Recent Advances in Environmental Science and Engineering Applications of Cellulose Nanocomposites. Environ. Sci. Technol. 2022, 53, 650–675. [Google Scholar] [CrossRef]
- Huang, T.; Li, Y.; Qian, J.; Liu, S.; Wang, J. Remediation of Cr(VI)-Contaminated Soil by Double-Modified Nanoscale Zero-Valent Iron: Performance and Mechanism. J. Soils Sediments 2024, 24, 1724–1738. [Google Scholar] [CrossRef]
- Rani, M.; Shanker, U. Environmental Nanotechnology Approaches for the Remediation of Contaminants. In Bioremediation Technology; CRC Press: Boca Raton, FL, USA, 2020; pp. 311–348. [Google Scholar]
- Liu, Z.; Ling, Q.; Cai, Y.; Xu, L.; Su, J.; Yu, K.; Wu, J.; Xu, J.; Hu, B.; Wang, X. Synthesis of Carbon-Based Nanomaterials and Their Application in Pollution Management. Nanoscale Adv. 2022, 4, 1246–1262. [Google Scholar] [CrossRef] [PubMed]
- Durodola, S.S.; Akeremale, O.K.; Ore, O.T.; Bayode, A.A.; Badamasi, H.; Olusola, J.A. A Review on Nanomaterial as Photocatalysts for Degradation of Organic Pollutants. J. Fluoresc. 2023, 34, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.D.; Attia, M.F.; Whitehead, D.C.; Alexis, F. Nanotechnology for Environmental Remediation: Materials and Applications. Molecules 2018, 23, 1760. [Google Scholar] [CrossRef] [PubMed]
- Boruah, J.; Chowdhury, D. Advances in Carbon Nanomaterial–Clay Nanocomposites for Diverse Applications. Minerals 2022, 13, 26. [Google Scholar] [CrossRef]
- Ali, M.A.; Thapa, U.; Antle, J.; Tanim, E.U.H.; Aguilar, J.M.; Bradley, I.M.; Aga, D.S.; Aich, N. Influence of Water Chemistry and Operating Parameters on PFOS/PFOA Removal Using rGO-nZVI Nanohybrid. J. Hazard. Mater. 2024, 469, 133912. [Google Scholar] [CrossRef]
- Lu, H.; Wang, X.; Cong, Q.; Chen, X.; Li, Q.; Li, X.; Zhong, S.; Deng, H.; Yan, B. Research Progress on the Degradation of Organic Pollutants in Water by Activated Persulfate Using Biochar-Loaded Nano Zero-Valent Iron. Molecules 2024, 29, 1130. [Google Scholar] [CrossRef]
- Toghan, A.; Gouda, M.H.; Zahran, H.F.; Alakhras, A.I.; Sanad, M.M.; Elessawy, N.A. Development of a New Promising Nanocomposite Photocatalyst of Polyaniline/Carboxylated Graphene Oxide Supported on PVA Film to Remove Different Ecological Pollutants. Diam. Relat. Mater. 2023, 139, 110400. [Google Scholar] [CrossRef]
- Khan, Z.U.H.; Gul, N.S.; Sabahat, S.; Sun, J.; Tahir, K.; Shah, N.S.; Muhammad, N.; Rahim, A.; Imran, M.; Iqbal, J.; et al. Removal of Organic Pollutants through Hydroxyl Radical-Based Advanced Oxidation Processes. Ecotoxicol. Environ. Saf. 2023, 267, 115564. [Google Scholar] [CrossRef]
- Naseem, K.; Abrar, E.; Khalid, A.; Ismail, M.A. Inorganic Nanoparticles as a Potential Catalyst for the Reduction of Rhodamine B Dye: A Critical Review. Inorg. Chem. Commun. 2024, 163, 112367. [Google Scholar] [CrossRef]
- Genuino, H.C.; Mazrui, N.; Seraji, M.S.; Luo, Z.; Hoag, G.E. Green Synthesis of Iron Nanomaterials for Oxidative Catalysis of Organic Environmental Pollutants. In New and Future Developments in Catalysis; Elsevier: Amsterdam, The Netherlands, 2013; pp. 41–61. [Google Scholar]
- Yu, J.; Yang, Y.; Sun, F.; Chen, J. Research Status and Prospect of Nano Silver (Ag)-Modified Photocatalytic Materials for Degradation of Organic Pollutants. Environ. Sci. Pollut. Res. 2023, 31, 191–214. [Google Scholar] [CrossRef]
- Madaan, V.; Mohan, B.; Bhankar, V.; Ranga, R.; Kumari, P.; Singh, P.; Sillanpää, M.; Kumar, M.; Solovev, A.A.; Kumar, K. Metal-Decorated CeO2 Nanomaterials for Photocatalytic Degradation of Organic Pollutants. Inorg. Chem. Commun. 2022, 146, 110099. [Google Scholar] [CrossRef]
- Alamelu, K.; Jaffar Ali, B.M. Ag Nanoparticle-Impregnated Sulfonated Graphene/TiO2 Composite for the Photocatalytic Removal of Organic Pollutants. Appl. Surf. Sci. 2020, 512, 145629. [Google Scholar] [CrossRef]
- Suresh, R.; Rajendran, S.; Khoo, K.S.; Soto-Moscoso, M. Enzyme Immobilized Nanomaterials: An Electrochemical Bio-Sensing and Biocatalytic Degradation Properties Toward Organic Pollutants. Top. Catal. 2022, 66, 691–706. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Xu, W.; Wu, H.; Shao, Y.; Han, X.; Zhou, M.; Gu, P.; Li, Z. Preparation Methods of Cellulose Nanocrystal and Its Application in Treatment of Environmental Pollution: A Mini-Review. Colloid Interface Sci. Commun. 2023, 53, 100707. [Google Scholar] [CrossRef]
- Kale, S.S.; Chauhan, R.; Nigam, B.; Gosavi, S.; Chaudhary, I.J. Effectiveness of Nanoparticles in Improving Soil Fertility and Eco-Friendly Crop Resistance: A Comprehensive Review. Biocatal. Agric. Biotechnol. 2024, 56, 103066. [Google Scholar] [CrossRef]
- Liang, H.; Shen, P.; Kong, X.; Liao, Y.; Liu, Y.; Wen, X. Optimal Nitrogen Practice in Winter Wheat-Summer Maize Rotation Affecting the Fates of 15N-Labeled Fertilizer. Agronomy 2020, 10, 521. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, K.; Abd-Elsalam, K. Nanofertilizers: Types, Delivery and Advantages in Agricultural Sustainability. Agrochemicals 2023, 2, 296–336. [Google Scholar] [CrossRef]
- Saurabh, K.; Prakash, V.; Dubey, A.K.; Ghosh, S.; Kumari, A.; Sundaram, P.K.; Jeet, P.; Sarkar, B.; Upadhyaya, A.; Das, A.; et al. Enhancing Sustainability in Agriculture with Nanofertilizers. Discov. Appl. Sci. 2024, 6, 559. [Google Scholar] [CrossRef]
- Haydar, M.S.; Ghosh, D.; Roy, S. Slow and Controlled Release Nanofertilizers as an Efficient Tool for Sustainable Agriculture: Recent Understanding and Concerns. Plant Nano Biol. 2024, 7, 100058. [Google Scholar] [CrossRef]
- Li, M.; Zhao, X.; Cheng, Y.; Wu, M.; Dong, C.; Xiang, H.; Li, Y.; Cai, Y.; Zhang, Z.; Yu, B. Zinc Oxide Nanoparticles Coupled Biochar-Based Slow-Release Fertilizer for Enhanced Nutrient Efficiency and Sustainable Agriculture. Ind. Crops Prod. 2025, 232, 121265. [Google Scholar] [CrossRef]
- Maduwanthi, R.K.; Munaweera, I.; Perera, W.P.T.D. Nutrient Nanohybrids Based on Sodium Alginate and Carboxymethyl Cellulose Provide Enhanced Slow Release of Magnesium, Zinc and Copper. In Chemical Papers; Springer: Berlin/Heidelberg, Germany, 2025; pp. 1–19. [Google Scholar]
- Sharma, G.; Kumar, A.; Devi, K.A.; Prajapati, D.; Bhagat, D.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Chitosan Nanofertilizer to Foster Source Activity in Maize. Int. J. Biol. Macromol. 2020, 145, 226–234. [Google Scholar] [CrossRef]
- Timilsina, S.; Adhikari, R.; Khatiwada, P.P.; Devkota, G.; Dahal, K.C. Chitosan-Based Zinc Oxide and Silver Nanoparticles Coating on Postharvest Quality of Papaya. SAARC J. Agric. 2025, 22, 181–196. [Google Scholar] [CrossRef]
- Tay, K.W.W.; Chin, S.F.; Wasli, M.E. Cellulose Nanoparticles as Controlled Release Nanocarriers for Urea. Waste Biomass Valorization 2025, 16, 5695–5711. [Google Scholar] [CrossRef]
- Ghribi, S.; Degli Esposti, L.; Steven, B.; Zuverza-Mena, N.; Yuan, J.; LaReau, J.C.; White, J.C.; Jaisi, D.P.; Adamiano, A.; Iafisco, M. Functionalization of Amorphous and Crystalline Calcium Phosphate Nanoparticles with Urea for Phosphorus and Nitrogen Fertilizer Applications. J. Agric. Food Chem. 2025, 73, 17507–17518. [Google Scholar] [CrossRef] [PubMed]
- Latha, M.; Subramanian, K.S.; Sundara Sharmila, D.J.; Raja, K.; Rajkishore, S.K.; Chitdeshwari, T. Urea–Lignin/Chitosan Nanocomposite as Slow-Release Nanofertilizer. ACS Agric. Sci. Technol. 2023, 3, 463–476. [Google Scholar] [CrossRef]
- Jithendar, B.; Kumar, R.; Rana, N. Revolutionizing Crop Nutrition: Exploring Nano Fertilizers in Agriculture. Int. J. Plant Soil Sci. 2024, 36, 327–339. [Google Scholar] [CrossRef]
- Kekeli, M.A.; Wang, Q.; Rui, Y. The Role of Nano-Fertilizers in Sustainable Agriculture: Boosting Crop Yields and Enhancing Quality. Plants 2025, 14, 554. [Google Scholar] [CrossRef]
- Deng, L.; Wang, A.; Ma, P.; Zhu, F.; Du, D.; Okoye, C.O.; Chen, C.; Deng, Q. Interaction between airway inflammation and gut microbiota dysbiosis caused by high temperatures (40 °C) and traffic-PM2.5 in mouse model. Environ. Res. 2025, 285, 122731. [Google Scholar] [CrossRef]
- Prabha, V.V.; Jayanthi, M.; Venkateshwar, A. Nano Management Techniques for Soil Reclamation. J. Adv. Biol. Biotechnol. 2024, 27, 813–819. [Google Scholar] [CrossRef]
- Xu, Z.; Long, X.; Jia, Y.; Zhao, D.; Pan, X. Occurrence, Transport, and Toxicity of Nanomaterials in Soil Ecosystems: A Review. Environ. Chem. Lett. 2022, 20, 3943–3969. [Google Scholar] [CrossRef]
- Brar, B.; Saharan, B.S.; Seth, C.S.; Kamboj, A.; Surkha; Bala, K.; Rajput, V.D.; Minkina, T.; Wong, M.H.; Kumar, D.; et al. Nanobiochar: Soil and Plant Interactions and Their Implications for Sustainable Agriculture. Biocatal. Agric. Biotechnol. 2024, 57, 103077. [Google Scholar] [CrossRef]
- Chen, X.; Duan, M.; Zhou, B.; Cui, L. Effects of Biochar Nanoparticles as a Soil Amendment on the Structure and Hydraulic Characteristics of a Sandy Loam Soil. Soil Use Manag. 2021, 38, 836–849. [Google Scholar] [CrossRef]
- Nepal, J.; Xin, X.; Maltais-Landry, G.; Netto-Ferreira, J.B.; Wright, A.L.; He, Z. Water Dispersible Carbon Nanomaterials Reduced N, P, and K Leaching Potential in Sandy Soils: A Column Leaching Study. Sci. Total Environ. 2024, 954, 176755. [Google Scholar] [CrossRef] [PubMed]
- Ngo, A.T.; Mori, Y.; Bui, L.T. Effects of Cellulose Nanofibers on Soil Water Retention and Aggregate Stability. Environ. Technol. Innov. 2024, 35, 103650. [Google Scholar] [CrossRef]
- Iqbal, B.; Zhao, T.; Yin, W.; Zhao, X.; Xie, Q.; Khan, K.Y.; Zhao, X.; Nazar, M.; Li, G.; Du, D. Impacts of soil microplastics on crops: A review. Appl. Soil Ecol. 2023, 181, 104680. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, X.; Wang, H.; Ding, B.; Ge, S.; Zhao, J. Effects of Graphene-Based Nanomaterials on Microorganisms and Soil Microbial Communities. Microorganisms 2024, 12, 814. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, Z.; Li, X.; Yu, Y. Effects of Modified Nanoscale Carbon Black on Plant Growth, Root Cellular Morphogenesis, and Microbial Community in Cadmium-Contaminated Soil. Environ. Sci. Pollut. Res. 2020, 27, 18423–18433. [Google Scholar] [CrossRef]
- Zuo, Y.; Zeng, W.; Huang, J. Effects of Exposure to Carbon Nanomaterials on Soil Microbial Communities: A Global Meta-Analysis. Land Degrad. Dev. 2023, 35, 238–248. [Google Scholar] [CrossRef]
- Udomkun, P.; Chandi, K.; Boonupara, T.; Kaewlom, P. Innovative Approaches: Exploring Nano-Biochar Technology’s Impact on Soil Properties, Alachlor Retention, and Microbial Populations. Environ. Technol. Innov. 2024, 35, 103659. [Google Scholar] [CrossRef]
- Chen, X.; Chu, S.; Chi, Y.; Wang, J.; Wang, R.; You, Y.; Hayat, K.; Khalid, M.; Zhang, D.; Zhou, P.; et al. Unraveling the role of multi-walled carbon nanotubes in a corn-soil system: Plant growth, oxidative stress and heavy metal (loid) s behavior. Plant Physiol. Biochem. 2023, 200, 107802. [Google Scholar] [CrossRef]
- Dai, Z.-C.; Kong, F.-L.; Li, Y.-F.; Ullah, R.; Ali, E.A.; Gul, F.; Du, D.-L.; Zhang, Y.-F.; Jia, H.; Qi, S.-S.; et al. Strong Invasive Mechanism of Wedelia trilobata via Growth and Physiological Traits under Nitrogen Stress Condition. Plants 2024, 13, 355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Goncalves, P.; Copeland, E.; Qi, S.S.; Dai, Z.C.; Li, G.L.; Wang, C.Y.; Du, D.L.; Thomas, T. Invasion by the weed Conyza canadensis alters soil nutrient supply and shifts microbiota structure. Soil Biol. Biochem. 2020, 143, 107739. [Google Scholar] [CrossRef]
- Soni, S.K.; Dogra, S.; Sharma, A.; Thakur, B.; Yadav, J.; Kapil, A.; Soni, R. Nanotechnology in Agriculture: Enhancing Crop Productivity with Sustainable Nano-Fertilizers and Nano-Biofertilizers. J. Soil Sci. Plant Nutr. 2024, 24, 6526–6559. [Google Scholar] [CrossRef]
- Wang, X.; Hussain, B.; Xin, X.; Zou, T.; Huang, X.; Cheng, L.; Wu, Z.; Yang, Y.; Li, Y.; He, Z.; et al. Fate and Physiological Effects of Foliar Selenium Nanoparticles in Wheat. ACS Nano 2025, 19, 21792–21806. [Google Scholar] [CrossRef] [PubMed]
- Viltres-Portales, M.; Sánchez-Martín, M.-J.; Boada, R.; Llugany, M.; Valiente, M. Liposomes as Selenium Nanocarriers for Foliar Application to Wheat Plants: A Biofortification Strategy. Food Chem. 2024, 448, 139123. [Google Scholar] [CrossRef]
- Naaz, H.; Rawat, K.; Saffeullah, P.; Umar, S. Silica Nanoparticles Synthesis and Applications in Agriculture for Plant Fertilization and Protection: A Review. Environ. Chem. Lett. 2022, 21, 539–559. [Google Scholar] [CrossRef]
- Torney, F.; Trewyn, B.G.; Lin, V.S.-Y.; Wang, K. Mesoporous Silica Nanoparticles Deliver DNA and Chemicals into Plants. Nat. Nanotechnol. 2007, 2, 295–300. [Google Scholar] [CrossRef]
- Durgude, S.A.; Ram, S.; Kumar, R.; Singh, S.V.; Singh, V.; Durgude, A.G.; Pramanick, B.; Maitra, S.; Gaber, A.; Hossain, A. Synthesis of Mesoporous Silica and Graphene-Based FeO and ZnO Nanocomposites for Nutritional Biofortification and Sustained the Productivity of Rice (Oryza sativa L.). J. Nanomater. 2022, 2022, 5120307. [Google Scholar] [CrossRef]
- Wang, P.; Lombi, E.; Zhao, F.-J.; Kopittke, P.M. Nanotechnology: A New Opportunity in Plant Sciences. Trends Plant Sci. 2016, 21, 699–712. [Google Scholar] [CrossRef]
- Cheng, L.; Qu, Z.; Chen, Q.; Wang, L.; Su, H.; Tao, J.; Lu, P.; Liang, T.; Zhang, J.; Cao, P.; et al. Single-Cell Transcriptome Reveals Aquaporin-Mediated Carbon Nanosol-Induced Growth Promotion of Plants. Adv. Sci. 2025, 12, 2504459. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Li, X.; Liang, T.; Nie, C.; Xie, F.; Liu, K.; Peng, X.; Xie, J. Carbon Nanoparticles Enhance Potassium Uptake via Upregulating Potassium Channel Expression and Imitating Biological Ion Channels in BY-2 Cells. J. Nanobiotechnol. 2020, 18, 21. [Google Scholar] [CrossRef]
- Faizan, M.; Karabulut, F.; Khan, I.; Akhtar, M.S.; Alam, P. Emergence of Nanotechnology in Efficient Fertilizer Management in Soil. S. Afr. J. Bot. 2024, 164, 242–249. [Google Scholar] [CrossRef]
- Yin, K.; Bao, Q.; Li, J.; Wang, M.; Wang, F.; Sun, B.; Sun, B.; Gong, Y.; Lian, F. Molecular Mechanisms of Growth Promotion and Selenium Enrichment in Tomato Plants by Novel Selenium-Doped Carbon Quantum Dots. Chemosphere 2024, 364, 143175. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Pal, S.; Panwar, P.; Sharma, R.K.; Bhutia, P.L. Biopolymeric Nanocarriers for Nutrient Delivery and Crop Biofortification. ACS Omega 2022, 7, 25909–25920. [Google Scholar] [CrossRef] [PubMed]
- Sigmon, L.R.; Adisa, I.O.; Liu, B.; Elmer, W.H.; White, J.C.; Dimkpa, C.O.; Fairbrother, D.H. Biodegradable Polymer Nanocomposites Provide Effective Delivery and Reduce Phosphorus Loss during Plant Growth. ACS Agric. Sci. Technol. 2021, 1, 529–539. [Google Scholar] [CrossRef]
- Wang, Q.; Liao, Y.; Zhao, W.; Yi, T.; Jiang, Y.; Zhu, G.; Wang, Q.; Huang, L.; Chen, F.; Zhang, P.; et al. Potassium-Based Nanomaterials Significantly Enhance Nutrient Utilization Efficiency and Promote High Crop Yields. Environ. Sci. Nano 2024, 11, 2906–2922. [Google Scholar] [CrossRef]
- Korpayev, S.; Karakeçili, A.; Dumanoğlu, H.; Ibrahim Ahmed Osman, S. Chitosan and Silver Nanoparticles Are Attractive Auxin Carriers: A Comparative Study on the Adventitious Rooting of Microcuttings in Apple Rootstocks. Biotechnol. J. 2021, 16, 2100046. [Google Scholar] [CrossRef]
- Chourasiya, V.K.; Nehra, A.; Shukla, P.S.; Singh, K.P.; Singh, P. Impact of Mesoporous Nano-Silica (SiO2) on Seed Germination and Seedling Growth of Wheat, Pea and Mustard Seed. J. Nanosci. Nanotechnol. 2021, 21, 3566–3572. [Google Scholar] [CrossRef]
- Kokina, I.; Jahundoviča, I.; Mickeviča, I.; Jermaļonoka, M.; Strautiņš, J.; Popovs, S.; Ogurcovs, A.; Sledevskis, E.; Polyakov, B.; Gerbreders, V. Target Transportation of Auxin on Mesoporous Au/SiO2 Nanoparticles as a Method for Somaclonal Variation Increasing in Flax (L. usitatissimum L.). J. Nanomater. 2017, 2017, 7143269. [Google Scholar] [CrossRef]
- Dhiman, V.K.; Rana, G.; Dhiman, V.K.; Subbarayan, R.; Sharma, M.; Singh, D.; Jabir, M.; Ghotekar, S.; Chauhan, A. Nanomaterials for Sustainable Agriculture: Plant Physiology and Environmental Resilience. Physiol. Mol. Plant Pathol. 2025, 139, 102824. [Google Scholar] [CrossRef]
- Xie, L.; Chen, F.; Du, H.; Zhang, X.; Wang, X.; Yao, G.; Xu, B. Graphene Oxide and Indole-3-Acetic Acid Cotreatment Regulates the Root Growth of Brassica napus L. via Multiple Phytohormone Pathways. BMC Plant Biol. 2020, 20, 101. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, N.; Kochar, M.; Bohidar, H.B.; Yang, W.; Cahill, D.M. Biologically Synthesized and Indole Acetic Acid-Loaded Graphene as Biostimulants for Maize Growth Enhancement. ACS Agric. Sci. Technol. 2023, 3, 432–444. [Google Scholar] [CrossRef]
- Li, R.; He, J.; Xie, H.; Wang, W.; Bose, S.K.; Sun, Y.; Hu, J.; Yin, H. Effects of Chitosan Nanoparticles on Seed Germination and Seedling Growth of Wheat (Triticum aestivum L.). Int. J. Biol. Macromol. 2019, 126, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Lah, A. Utilizing Nanomaterials Linked with Plant Growth-Promoting Bacteria For Agricultural Advancements A Short Review. J. Adv. Zool. 2023, 44, 2659–2664. [Google Scholar] [CrossRef]
- Jiao, L.; Cao, X.; Wang, C.; Chen, F.; Zou, H.; Yue, L.; Wang, Z. Crosstalk between In Situ Root Exudates and Rhizobacteria to Promote Rice Growth by Selenium Nanomaterials. Sci. Total Environ. 2023, 878, 163175. [Google Scholar] [CrossRef]
- Al-Aaraji, N.A.-H.; Ghazi, R.A.; Heydaryan, K.; Kadhim, S.A.; Khojasteh, H.; Shaikhah, D.; Fini, M.S. Plasmon-Enhanced Photocatalysis and Antimicrobial Activity of Green-Synthesized Ag-Decorated ZnO Nanoparticles Using Mentha pulegium Extract. Plasmonics 2025, 20, 9723–9734. [Google Scholar] [CrossRef]
- Zhou, D.; Li, X.; Zhou, Q.; Zhu, H. Infrared Driven Hot Electron Generation and Transfer from Non-Noble Metal Plasmonic Nanocrystals. Nat. Commun. 2020, 11, 2994. [Google Scholar] [CrossRef]
- Wolf, A.; Härtling, T.; Hinrichs, D.; Dorfs, D. Synthesis of Plasmonic Cu2-xSe@ZnS Core@Shell Nanoparticles. ChemPhysChem 2015, 17, 717–723. [Google Scholar] [CrossRef]
- Fan, R.; Chen, G.; Zheng, N.; Sun, Z. Phase Change Composites Enhanced by Gold Nanorods Decorated MXene for Efficient Photothermal Conversion and Storage. Sol. Energy Mater. Sol. Cells 2025, 288, 113647. [Google Scholar] [CrossRef]
- Reddy Pullagurala, V.L.; Adisa, I.O.; Rawat, S.; Kalagara, S.; Hernandez-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. ZnO Nanoparticles Increase Photosynthetic Pigments and Decrease Lipid Peroxidation in Soil Grown Cilantro (Coriandrum sativum). Plant Physiol. Biochem. 2018, 132, 120–127. [Google Scholar] [CrossRef]
- Otari, S.; Bapat, V.A.; Lakkakula, J.; Kadam, U.S.; Suprasanna, P. Advancements in Bionanotechnological Applications for Climate-Smart Agriculture and Food Production. Biocatal. Agric. Biotechnol. 2024, 57, 103117. [Google Scholar] [CrossRef]
- Samal, D.P.K.; Sukla, L.B.; Bishoyi, A.K. Biosynthesis of Phosphorus Nanoparticles for Sustainable Agroecosystems: Next Generation Nanotechnology Application for Improved Plant Growth. ACS Omega 2025, 10, 14555–14565. [Google Scholar] [CrossRef]
- Zhu, S.; Du, H.; Su, F.; Wang, J.; Meng, Q.; Liu, T.; Guo, R.; Chen, Z.; Li, H.; Liu, W.; et al. Molecular cytogenetic analyses of two new wheat-rye 6RL translocation lines with resistance to wheat powdery mildew. Crop J. 2023, 11, 584–592. [Google Scholar] [CrossRef]
- Sun, D.; Hussain, H.I.; Yi, Z.; Rookes, J.E.; Kong, L.; Cahill, D.M. Mesoporous Silica Nanoparticles Enhance Seedling Growth and Photosynthesis in Wheat and Lupin. Chemosphere 2016, 152, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Nepal, J.; Xin, X.; Maltais-Landry, G.; Wright, A.L.; Stoffella, P.J.; Ahmad, W.; He, Z.L. Water-Dispersible Carbon Nanomaterials Improve Lettuce (Latuca sativa) Growth and Enhance Soil Biochemical Quality at Low to Medium Application Rates. Plant Soil 2022, 485, 569–587. [Google Scholar] [CrossRef]
- Zhao, S.; Li, C.; Wu, C.; Hu, J.; Zhang, Z.; Lei, B.; Li, W.; Hu, C.; Liu, Y.; Zheng, M. Effects of Multifunctional Cerium-Doped Carbon Dots on Photosynthetic Capacity and Nutritional Quality of Lettuce. Environ. Sci. Nano 2024, 11, 3137–3149. [Google Scholar] [CrossRef]
- Nepal, J.; Xin, X.; Maltais-Landry, G.; Ahmad, W.; Pereira, J.; Santra, S.; Wright, A.L.; Ogram, A.; Stofella, P.J.; He, Z. Carbon Nanomaterials Are a Superior Soil Amendment for Sandy Soils Than Biochar Based on Impacts on Lettuce Growth, Physiology and Soil Biochemical Quality. NanoImpact 2023, 31, 100480. [Google Scholar] [CrossRef]
- Pandey, K.; Omar, R.A.; Verma, N.; Gupta, G. Fe–Carbon Nanofiber-Modified Mo-MOF for the Controlled Release and Translocation of Micronutrients in Plants. Environ. Sci. Nano 2024, 11, 1597–1611. [Google Scholar] [CrossRef]
- Zhao, F.; Xin, X.; Cao, Y.; Su, D.; Ji, P.; Zhu, Z.; He, Z. Use of Carbon Nanoparticles to Improve Soil Fertility, Crop Growth and Nutrient Uptake by Corn (Zea mays L.). Nanomaterials 2021, 11, 1597–1611. [Google Scholar] [CrossRef]
- Noreen, S.; Saleem, M.H.; Ali, B.; Khan, K.A.; Hafeez, A.; Javed, M.A. Advancing Plant Resilience Against Microplastics and Metals Through Nanotechnology. BioNanoScience 2024, 14, 2065–2079. [Google Scholar] [CrossRef]
- Ping, Y.; Cao, D.; Hu, J.; Lin, Y.; Dang, C.; Xue, D. The Application, Safety, and Challenge of Nanomaterials on Plant Growth and Stress Tolerance. Ind. Crops Prod. 2024, 222, 119691. [Google Scholar] [CrossRef]
- Chen, L.; Huang, F.; Liu, J.; Yang, R.; Hu, Q.; Li, T.; Zeng, Y.; Dai, W.; Qiu, T.; White, J.C.; et al. Engineered Nanomaterials Enhance Crop Drought Resistance for Sustainable Agriculture. J. Agric. Food Chem. 2025, 73, 8715–8728. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, S.; Zhou, B. Revolutionizing Crop Production with Iron Nanoparticles for Controlled Release of Plant Growth Regulators and Abiotic Stress Resistance. Plant Nano Biol. 2025, 13, 100172. [Google Scholar] [CrossRef]
- Kim, S.M.; Rhie, Y.H.; Kong, S.M.; Kim, Y.S.; Na, Y.H. Synthesis of Nanocomposite Hydrogels for Improved Water Retention in Horticultural Soil. ACS Agric. Sci. Technol. 2022, 2, 1206–1217. [Google Scholar] [CrossRef]
- Farooq, M.; Gogoi, N.; Hussain, M.; Barthakur, S.; Paul, S.; Bharadwaj, N.; Migdadi, H.M.; Alghamdi, S.S.; Siddique, K.H. Effects, Tolerance Mechanisms and Management of Salt Stress in Grain Legumes. Plant Physiol. Biochem. 2017, 118, 199–217. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, L.; Zhao, F.; Li, J.; Zhang, X.; Kong, X.; Wu, H.; Zhang, Z. Plant Salinity Stress Response and Nano-Enabled Plant Salt Tolerance. Front. Plant Sci. 2022, 13, 895412. [Google Scholar] [CrossRef]
- Khan, I.; Awan, S.A.; Rizwan, M.; Huizhi, W.; Ulhassan, Z.; Xie, W. Silicon Nanoparticles Improved the Osmolyte Production, Antioxidant Defense System, and Phytohormone Regulation in Elymus sibiricus (L.) under Drought and Salt Stress. Environ. Sci. Pollut. Res. 2024, 31, 8985–8999. [Google Scholar] [CrossRef]
- Wang, S.; Shen, X.; Guan, X.; Sun, L.; Yang, Z.; Wang, D.; Chen, Y.; Li, P.; Xie, Z. Nano-Silicon Enhances Tomato Growth and Antioxidant Defense under Salt Stress. Environ. Sci. Nano 2025, 12, 315–324. [Google Scholar] [CrossRef]
- Desouky, A.F.; Desoukey, S.F.; Abdel-Aziz, H.S.M.; EL-kholy, R.I.; Hanafy, M.S. Exogenous Application of Selenium Nanoparticles (Se-NPs) to Mitigate Salt Stress in Soybean-Evaluation of Physiological, Molecular and Biochemical Processes. J. Soil Sci. Plant Nutr. 2024, 24, 6798–6813. [Google Scholar] [CrossRef]
- Ghosh, D.; Das, T.; Paul, P.; Dua, T.K.; Roy, S. Zinc-Loaded Mesoporous Silica Nanoparticles Mitigate Salinity Stress in Wheat Seedlings through Silica-Zinc Uptake, Osmotic Balance, and ROS Detoxification. Plant Physiol. Biochem. 2024, 211, 108693. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, G.; Yao, L.; Huang, L.; Wang, J.; Gao, W. Effects of Metal Nanoparticles and Other Preparative Materials in the Environment on Plants: From the Perspective of Improving Secondary Metabolites. J. Agric. Food Chem. 2022, 70, 916–933. [Google Scholar] [CrossRef]
- Sharifan, H.; Ma, X.; Moore, J.M.; Habib, M.R.; Evans, C. Zinc Oxide Nanoparticles Alleviated the Bioavailability of Cadmium and Lead and Changed the Uptake of Iron in Hydroponically Grown Lettuce (Lactuca sativa L. var. Longifolia). ACS Sustain. Chem. Eng. 2019, 7, 16401–16409. [Google Scholar] [CrossRef]
- Maduraimuthu, D.; Alagarswamy, S.; Prabhakaran, J.; Karuppasami, K.M.; Venugopal, P.B.; Koothan, V.; Natarajan, S.; Dhashnamurthi, V.; Veerasamy, R.; Rathinavelu, S.; et al. Drought Tolerance of Mungbean Is Improved by Foliar Spray of Nanoceria. Agronomy 2023, 13, 201. [Google Scholar] [CrossRef]
- Rukhsar-Ul-Haq; Kausar, A.; Hussain, S.; Javed, T.; Zafar, S.; Anwar, S.; Hussain, S.; Zahra, N.; Saqib, M. Zinc Oxide Nanoparticles as Potential Hallmarks for Enhancing Drought Stress Tolerance in Wheat Seedlings. Plant Physiol. Biochem. 2023, 195, 341–350. [Google Scholar] [CrossRef]
- Mai, Y.; Ren, Y.; Deng, S.; Ashraf, U.; Tang, X.; Duan, M.; Mo, Z. Influence of ZnO Nanoparticles on Early Growth Stage of Fragrant Rice at Low Temperature (LT) Stress. J. Soil Sci. Plant Nutr. 2024, 24, 1301–1317. [Google Scholar] [CrossRef]
- Li, G.; Ma, Z.; Zhang, N.; Li, M.; Li, W.; Mo, Z. Foliar Application of Silica Nanoparticles Positively Influences the Early Growth Stage and Antioxidant Defense of Maize Under Low Light Stress. J. Soil Sci. Plant Nutr. 2024, 24, 2276–2294. [Google Scholar] [CrossRef]
- Zafar, S.; Khan, S.; Ibrar, D.; Khan, M.K.; Hasnain, Z.; Mehmood, K.; Rais, A.; Gul, S.; Irshad, S.; Nawaz, M. Application of Zinc Nanoparticles as Seed Priming Agent Improves Growth and Yield of Wheat Seedlings Grown under Salinity Stress by Enhanced Antioxidants Activities and Gas Exchange Attributes. Cereal Res. Commun. 2024, 52, 1551–1564. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Dai, H.; Kong, X.; Rahman, M.; Zhang, B.; Zhang, Z.; Zhou, Y.; Liu, Q. Iron Oxide Nanoparticles (FeO-NPs) Mitigate Salt Stress in Peanut Seedlings by Enhancing Photosynthesis, Osmoregulation, and Antioxidant Activity. Plant Physiol. Biochem. 2025, 227, 110206. [Google Scholar] [CrossRef]
- Rahman, S.; Ahmad, I.; Nafees, M. Mitigation of Heavy Metal Stress in Maize (Zea mays L.) through Application of Silicon Nanoparticles. Biocatal. Agric. Biotechnol. 2023, 50, 102757. [Google Scholar] [CrossRef]
- Nasirzadeh, L.; Kvarnheden, A.; Sorkhilaleloo, B.; Hervan, E.M.; Fatehi, F. Foliar-Applied Selenium Nanoparticles Can Alleviate Soil-Cadmium Stress Through Physio-Chemical and Stomatal Changes to Optimize Yield, Antioxidant Capacity, and Fatty Acid Profile of Wheat (Triticum aestivum L.). J. Soil Sci. Plant Nutr. 2022, 22, 2469–2480. [Google Scholar] [CrossRef]
- Ulhassan, Z.; Yang, S.; He, D.; Khan, A.R.; Salam, A.; Azhar, W.; Muhammad, S.; Ali, S.; Hamid, Y.; Khan, I.; et al. Seed Priming with Nano-Silica Effectively Ameliorates Chromium Toxicity in Brassica Napus. J. Hazard. Mater. 2023, 458, 13190. [Google Scholar] [CrossRef]
- Ma, J.; Alshaya, H.; Okla, M.K.; Alwasel, Y.A.; Chen, F.; Adrees, M.; Hussian, A.; Hameed, S.; Shahid, M.J. Application of Cerium Dioxide Nanoparticles and Chromium-Resistant Bacteria Reduced Chromium Toxicity in Sunflower Plants. Front. Plant Sci. 2022, 13, 895412. [Google Scholar] [CrossRef]
- Ma, X.; Sharifan, H.; Dou, F.; Sun, W. Simultaneous Reduction of Arsenic (As) and Cadmium (Cd) Accumulation in Rice by Zinc Oxide Nanoparticles. Chem. Eng. J. 2020, 384, 123802. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, X.; Liu, J.; Zhang, Z.; Qin, C.; Zhao, Y.; Wu, G.; Wu, N.; Xu, W. Synergistic Remediation of Cadmium Pollution in Saline-Alkali Soil by Hydrogel and Suaeda salsa. ACS Appl. Mater. Interfaces 2025, 17, 3911–3923. [Google Scholar] [CrossRef] [PubMed]
- Adrees, M.; Khan, Z.S.; Rehman, M.Z.U.; Rizwan, M.; Ali, S. Foliar Spray of Silicon Nanoparticles Improved the Growth and Minimized Cadmium (Cd) in Wheat under Combined Cd and Water-Limited Stress. Environ. Sci. Pollut. Res. 2022, 29, 77321–77332. [Google Scholar] [CrossRef] [PubMed]
- Ayub, M.A.; Ahmad, H.R.; Zia ur Rehman, M.Z.; Waraich, E. Cerium Oxide Nanoparticles Alleviates Stress in Wheat Grown on Cd Contaminated Alkaline Soil. Chemosphere 2023, 338, 139561. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ma, W.; Tao, R.; Fan, Q.; Zhang, M.; Qin, D.; Cao, X.; Li, J.; Xiong, R.; Huang, C. Nanomaterials: Recent Advances in Plant Disease Diagnosis and Treatment. Nano Today 2024, 57, 102326. [Google Scholar] [CrossRef]
- Jiang, L.; Xiang, S.; Lv, X.; Wang, X.; Li, F.; Liu, W.; Liu, C.; Ran, M.; Huang, J.; Xu, X.; et al. Biosynthesized Silver Nanoparticles Inhibit Pseudomonas syringae pv. tabaci by Directly Destroying Bacteria and Inducing Plant Resistance in Nicotiana benthamiana. Phytopathol. Res. 2022, 4, 43. [Google Scholar]
- Feng, H.; Fan, G.; Liu, Z.; Zhou, L.; Wang, X.; Kang, Z.; Cai, L. Nanomediated Stimulation: An Alternative to Brassinolide Hormone Replacement Therapy for Plant Resistance Activation. J. Agric. Food Chem. 2025, 73, 5767–5780. [Google Scholar] [CrossRef]
- Ahmed, T.; Noman, M.; Gardea-Torresdey, J.L.; White, J.C.; Li, B. Dynamic Interplay between Nano-Enabled Agrochemicals and the Plant-Associated Microbiome. Trends Plant Sci. 2023, 28, 1310–1325. [Google Scholar] [CrossRef]
- Ouda, S.M. Antifungal Activity of Silver and Copper Nanoparticles on Two Plant Pathogens, Alternaria alternata and Botrytis cinerea. Res. J. Microbiol. 2014, 9, 34–42. [Google Scholar] [CrossRef]
- Khan, M.; Khan, A.A.; Parveen, A.; Min, K.; Yadav, V.K.; Khan, A.U.; Alam, M. Mitigating the Growth of Plant Pathogenic Bacterium, Fungi, and Nematode by Using Plant-Mediated Synthesis of Copper Oxide Nanoparticles (CuO NPs). Green Chem. Lett. Rev. 2023, 16, 2177520. [Google Scholar] [CrossRef]
- Puangpathumanond, S.; Chee, H.L.; Sevencan, C.; Yang, X.; Lau, O.S.; Lew, T.T.S. Stomata-Targeted Nanocarriers Enhance Plant Defense against Pathogen Colonization. Nat. Commun. 2025, 16, 4816. [Google Scholar] [CrossRef] [PubMed]
- Faraz, H.S.; Darwish, M.J.; Shifeta, N.T.; Akram, W. Development of Pesticide-Loaded Nanoparticles for Controlled and Targeted Crop Protection. J. Med. Health Sci. Rev. 2025, 2, 6214–6226. [Google Scholar]
- El-Saadony, M.T.; Saad, A.M.; Soliman, S.M.; Salem, H.M.; Desoky, E.S.M.; Babalghith, A.O.; El-Tahan, M.T.; Ibrahim, O.M.; Ebrahim, A.A.M.; El-Mageed, T.A.A.; et al. Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review. Front. Plant Sci. 2022, 13, 946717. [Google Scholar] [CrossRef]
- Panda, S.K.; Gupta, D.; Patel, M.; Vyver, C.V.D.; Koyama, H. Functionality of Reactive Oxygen Species (ROS) in Plants: Toxicity and Control in Poaceae Crops Exposed to Abiotic Stress. Plants 2024, 13, 2071. [Google Scholar] [CrossRef]
- Rao, M.J.; Duan, M.; Zhou, C.; Jiao, J.; Cheng, P.; Yang, L.; Zheng, B. Antioxidant Defense System in Plants: Reactive Oxygen Species Production, Signaling, and Scavenging During Abiotic Stress-Induced Oxidative Damage. Horticulturae 2025, 11, 477. [Google Scholar] [CrossRef]
- Gong, J.; Liu, Q.; Cai, L.; Yang, Q.; Tong, Y.; Chen, X.; Kotha, S.; Mao, X.; He, W. Multimechanism Collaborative Superior Antioxidant CDzymes To Alleviate Salt Stress-Induced Oxidative Damage in Plant Growth. ACS Sustain. Chem. Eng. 2023, 11, 4237–4247. [Google Scholar] [CrossRef]
- Qin, M.; Gong, J.; Zeng, G.; Cao, W.; Song, B.; Zhang, Y.; Fang, S.; Xu, F.; Wu, Y. Molybdenum Trioxide Nanoparticles as Promising Stimulators for Facilitating Phytoremediation by Cd Hyperaccumulator Solanum nigrum L. ACS Sustain. Chem. Eng. 2024, 12, 4767–4778. [Google Scholar]
- Keke, L.; Yiting, L.; Xiaohui, Y.; Yi, Y.; Junliang, Y.; Yunfeng, C.; Yongxing, Z. Silica Nanoparticles Enhanced Seed Germination and Seedling Growth of Drought-Stressed Wheat by Modulating Antioxidant Enzymes and Mitigating Lipid Peroxidation. Environ. Sci. Nano 2025, 12, 3231–3246. [Google Scholar] [CrossRef]
- Sulaiman; Ahmad, A.; Noor Hassim, M.F. Effects of Silica Nanoparticles on Morpho-Histological and Antioxidant Activities of Rice Seedlings under Drought Stress. S. Afr. J. Bot. 2024, 168, 497–508. [Google Scholar] [CrossRef]
- Zia-ur-Rehman, M.; Anayatullah, S.; Irfan, E.; Hussain, S.M.; Rizwan, M.; Sohail, M.I.; Jair, M.; Ahmad, T.; Usman, M.; Alharby, H.F. Nanoparticles Assisted Regulation of Oxidative Stress and Antioxidant Enzyme System in Plants under Salt Stress: A Review. Chemosphere 2023, 314, 137649. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, J.; Wang, R.; Zhang, D.; Chu, S.; Yang, X.; Hayat, K.; Fan, Z.; Cao, X.; Ok, Y.O.; et al. Insights into Growth-Promoting Effect of Nanomaterials: Using Transcriptomics and Metabolomics to Reveal the Molecular Mechanisms of MWCNTs in Enhancing Hyperaccumulator under Heavy Metal(loid)s Stress. J. Hazard. Mater. 2022, 439, 129640. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.M.; Jha, A.B.; Dubey, R.S.; Sharma, P. Nanoparticle-Mediated Mitigation of Salt Stress-Induced Oxidative Damage in Plants: Insights into Signaling, Gene Expression, and Antioxidant Mechanisms. Environ. Sci. Nano 2025, 12, 2983–3017. [Google Scholar] [CrossRef]
- Chen, S.; Teng, Y.; Luo, Y.; Kuramae, E.; Ren, W. Threats to the Soil Microbiome from Nanomaterials: A Global Meta and Machine-Learning Analysis. Soil Biol. Biochem. 2024, 188, 109248. [Google Scholar] [CrossRef]
- Pan, L.; He, F.; Liang, Q.; Bo, Y.; Lin, X.; Javed, Q.; Ullah, M.S.; Sun, J. Allelopathic effects of caffeic acid and its derivatives on seed germination and growth competitiveness of native plants (Lantana indica) and invasive plants (Solidago canadensis). Agriculture 2023, 13, 1719. [Google Scholar] [CrossRef]
- Ouyang, B.; Yilihamu, A.; Liu, D.; Ouyang, P.; Zhang, D.; Wu, X.; Yang, S.T. Toxicity and Environmental Impact of Multi-Walled Carbon Nanotubes to Nitrogen-Fixing Bacterium Azotobacter chroococcum. J. Environ. Chem. Eng. 2021, 9, 105291. [Google Scholar] [CrossRef]
- Wu, F.; You, Y.; Werner, D.; Wu, F.; You, Y.; Werner, D.; Jiao, S.; Hu, J.; Zhang, X.; Wan, Y.; et al. Carbon Nanomaterials Affect Carbon Cycle-Related Functions of the Soil Microbial Community and the Coupling of Nutrient Cycles. J. Hazard. Mater. 2020, 390, 122144. [Google Scholar] [CrossRef]
- Ouyang, B.; Liu, F.; Liang, C.; Zhang, J.; Hu, R.; Yuan, H.; Hai, R.; Yuan, Y.; Wu, X.; Yang, S.T. Toxicity and Activity Inhibition of Metal-Organic Framework MOF-199 to Nitrogen-Fixing Bacterium Azotobacter vinelandii. Sci. Total Environ. 2022, 813, 151912. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, J.; Yang, J.; Lv, Z.; Song, Z.; Han, H. Soybean Rhizosphere Microorganisms Alleviate Mo Nanomaterials Induced Stress by Improving Soil Microbial Community Structure. Chemosphere 2023, 310, 136784. [Google Scholar] [CrossRef]
- Uddin, M.N.; Desai, F.; Asmatulu, E. Engineered Nanomaterials in the Environment: Bioaccumulation, Biomagnification and Biotransformation. Environ. Chem. Lett. 2020, 18, 1073–1083. [Google Scholar] [CrossRef]
- Okeke, E.S.; Ezeorba, T.P.C.; Okoye, C.O.; Chen, Y.; Mao, G.; Feng, W.; Wu, X. Analytical detection methods for azo dyes: A focus on comparative limitations and prospects of bio-sensing and electrochemical nano-detection. J. Food Compos. Anal. 2022, 114, 104778. [Google Scholar] [CrossRef]
- Han, C.; Xiao, Y.; Liu, Z.; Du, D.; Li, M. Cascade amplifying aptasensor for positively correlated detecting OTA: Based on DNase I-assisted cyclic enzyme digestion and AgNPs@ gel-enhanced fluorescence. Food Control 2023, 153, 109970. [Google Scholar] [CrossRef]
- Krishna, D.; Sachan, H.K. Nano-Toxicity and Aquatic Food Chain. In Advances in Science, Technology & Innovation; Springer International Publishing: Cham, Switzerland, 2021; pp. 189–198. [Google Scholar]
- Xiao, B.; Yang, R.; Chen, P.; Yang, J.; Sun, B.; Wang, K.; Zhong, T.; Zhu, L. Insights into the Lower Trophic Transfer of Silver Ions than Silver Containing Nanoparticles along an Aquatic Food Chain. Sci. Total Environ. 2022, 804, 150228. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, K.S.; Husen, A. Plant Response to Engineered Metal Oxide Nanoparticles. Nanoscale Res. Lett. 2017, 12, 92. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Sharma, N.; Prashar, A.; Hansa, A.; Lajayer, B.A.; Price, G.W. Unraveling the Plethora of Toxicological Implications of Nanoparticles on Living Organisms and Recent Insights into Different Remediation Strategies: A Comprehensive Review. Sci. Total Environ. 2024, 906, 167697. [Google Scholar] [CrossRef]
- Ge, D.; Du, Q.; Ran, B.; Liu, X.; Wang, X.; Ma, X.; Cheng, F.; Sun, B. The Neurotoxicity Induced by Engineered Nanomaterials. Int. J. Nanomed. 2019, 14, 4167–4186. [Google Scholar] [CrossRef]
- Deng, L.; Liu, H.; Ma, Y.; Miao, Y.; Fu, X.; Deng, Q. Endocytosis Mechanism in Physiologically-Based Pharmacokinetic Modeling of Nanoparticles. Toxicol. Appl. Pharmacol. 2019, 384, 114765. [Google Scholar] [CrossRef]
- EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP). Guidance on Risk Assessment of Nanomaterials to Be Applied in the Food and Feed Chain: Human and Animal Health. EFSA J. 2021, 19, 6768. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). 7 U.S.C. §136. 1947. Available online: https://www.epa.gov/laws-regulations/summary-federal-insecticide-fungicide-and-rodenticide-act (accessed on 7 July 2025).
- U. S. Environmental Protection Agency. Chemical Substances When Manufactured or Processed as Nanoscale Materials; TSCA Reporting and Recordkeeping Requirements. Fed. Regist. 2015, 80, 18330–18342. [Google Scholar]
- Ghosh, S.; Yadav, P.; Sankaranarayanan, S.; Bhatia, D. Plant-Derived Nanomaterials for Targeted Biological Applications and Smart Agriculture. ChemistrySelect 2023, 8, e2023003495. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development (OECD). OECD Guidelines for the Testing of Chemicals. Available online: https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals_72d77764-en (accessed on 7 July 2025).
- Organisation for Economic Co-Operation and Development (OECD). Guidance Document on Aquatic and Sediment Toxicological Testing of Nanomaterials. OECD Environment, Health and Safety Publications, Series on Testing and Assessment No. 317; OECD: Paris, France, 2021; Available online: https://www.oecd.org/chemicalsafety/testing/ (accessed on 10 July 2025).
- ISO/TS 27687:2022; Nanotechnologies—Guidance on Characterization of Engineered Nanomaterials for Environmental Health and Safety. ISO: Geneva, Switzerland, 2022.
- Andersson, K.; Ohlsson, T.; Olsson, P. Life Cycle Assessment (LCA) of Food Products and Production Systems. Trends Food Sci. Technol. 1994, 5, 134–138. [Google Scholar] [CrossRef]
- Herrchen, M.; Klein, W. Use of the Life-Cycle Assessment (LCA) Toolbox for an Environmental Evaluation of Production Processes. Pure Appl. Chem. 2000, 72, 1247–1252. [Google Scholar] [CrossRef]
- Nizam, N.U.M.; Hanafiah, M.M.; Woon, K.S. A Content Review of Life Cycle Assessment of Nanomaterials: Current Practices, Challenges, and Future Prospects. Nanomaterials 2021, 11, 3324. [Google Scholar] [CrossRef]
- Alsaiari, N.S.; Alzahrani, F.M.; Amari, A.; Osman, H.; Harharah, H.N.; Elboughdiri, N.; Tahoon, M.A. Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. Molecules 2023, 28, 463. [Google Scholar] [CrossRef]
- Shalma, S.; Shabbirahmed, A.M.; Haldar, D.; Patel, A.K.; Singhania, R.R. Influence of Reaction Conditions on Synthesis and Applications of Lignin Nanoparticles Derived from Agricultural Wastes. Environ. Technol. Innov. 2023, 31, 103163. [Google Scholar] [CrossRef]
- Saxena, A.; Parveen, F.; Hussain, A.; Khubaib, M.; Ashfaque, M. Exploring the Multifaceted Landscape of Lignocellulosic Biomass-Derived Nanocellulose and Nanolignin: Synthesis and Applications. Polym. Bull. 2025, 82, 7525–7563. [Google Scholar] [CrossRef]
- Yadav, V.K.; Gupta, N.; Kumar, P.; Dashti, M.G.; Tirth, V.; Khan, S.H.; Yadav, K.K.; Islam, S.; Choudhary, N.; Algahtani, A.; et al. Recent Advances in Synthesis and Degradation of Lignin and Lignin Nanoparticles and Their Emerging Applications in Nanotechnology. Materials 2022, 15, 953. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yang, B.; Zhu, W.; Deng, T.; Pu, Y.; Ragauskas, A.; Wang, H. Towards Functionalized Lignin and Its Derivatives for High-Value Material Applications. Ind. Crops Prod. 2023, 200, 116824. [Google Scholar] [CrossRef]
- Maršík, D.; Thoresen, P.P.; Maťátková, O.; Masák, J.; Sialini, P.; Rova, U.; Tsikourkitoudi, V.; Christakopoulos, P.; Matsakas, L.; Jarošová Kolouchová, I. Synthesis and Characterization of Lignin-Silver Nanoparticles. Molecules 2024, 29, 2360. [Google Scholar] [CrossRef] [PubMed]
- Rajput, S.K.; Banerjee, S.; Sharma, V.; Ali, S.W.; Singh, M.K.; Shakyawar, D.B. A Facile and Greener Approach for Synthesis of Lignin Capped-Silver Nanoparticles (LS-AgNPs) and Assessment of Their Antibacterial and Antioxidant Properties. J. Mol. Struct. 2025, 132, 140515. [Google Scholar] [CrossRef]
- Scopel, E.; Camargos, C.H.M.; Pinto, L.O.; Trevisan, H.; Ferreira, E.S.; Rezende, C.A. Broadening the Product Portfolio with Cellulose and Lignin Nanoparticles in an Elephant Grass Biorefinery. Biofuels Bioprod. Biorefining 2023, 17, 859–872. [Google Scholar] [CrossRef]
- Wasim, M.; Mushtaq, M.; Khan, S.U.; Farooq, A.; Naeem, M.A.; Khan, M.R.; Salam, A.; Wei, Q. Development of Bacterial Cellulose Nanocomposites: An Overview of the Synthesis of Bacterial Cellulose Nanocomposites with Metallic and Metallic-Oxide Nanoparticles by Different Methods and Techniques for Biomedical Applications. J. Ind. Text. 2020, 51, 1886S–1915S. [Google Scholar] [CrossRef]
- Hu, W.; Chen, S.; Yang, J.; Li, Z.; Wang, H. Functionalized Bacterial Cellulose Derivatives and Nanocomposites. Carbohydr. Polym. 2014, 101, 1043–1060. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, C.; Csoka, L. Functionalization of Wood/Plant-Based Natural Cellulose Fibers with Nanomaterials: A Review. TAPPI J. 2018, 17, 92–111. [Google Scholar] [CrossRef]
- Thangadurai, D.; Prakash, L.; Sangeetha, J.; Al-Tawaha, A.R.M.S.; David, M.; Islam, S.; Adetunji, J.B. Sustainable Synthesis of Greener Nanomaterials: Principles, Processes, and Products. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–23. [Google Scholar]
- Lan, K.; Wang, H.S.-H.; Lee, T.; de Assis, C.A.; Venditti, R.A.; Zhu, Y.; Yao, Y. A Modeling Framework to Identify Environmentally Greener and Lower-Cost Pathways of Nanomaterials. Green Chem. 2024, 26, 3466–3478. [Google Scholar] [CrossRef]
- Sun, L.; Hou, C.; Wei, N.; Tan, Y.; Liang, Q.; Feng, J. pH/Cellulase Dual Environmentally Responsive Nano-Metal Organic Frameworks for Targeted Delivery of Pesticides and Improved Biosafety. Chem. Eng. J. 2023, 478, 147294. [Google Scholar] [CrossRef]
- Piroonpan, T.; Huajaikaew, E.; Kurantowicz, N.; Potiyaraj, P.; Pasanphan, W. pH-Responsive Chitosan Nanoparticles for Controlled-Release Nitrogen Fertilizer: Template-Tampering Free Radical Graft Copolymerization under Energetic Radiation Study. Eur. Polym. J. 2024, 203, 112670. [Google Scholar] [CrossRef]
- Ma, Y.; Yu, M.; Wang, Y.; Pan, S.; Sun, X.; Zhao, R.; Sun, Z.; Gao, R.; Guo, X.; Xu, Y.; et al. A pH/Cellulase Dual Stimuli-Responsive Cellulose-Coated Metal–Organic Framework for Eco-Friendly Fungicide Delivery. Chem. Eng. J. 2023, 462, 142190. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Hayat, K.; Zhang, D.; Zhou, P. Small Structures with Big Impact: Multi-Walled Carbon Nanotubes Enhanced Remediation Efficiency in Hyperaccumulator Solanum nigrum L. under Cadmium and Arsenic Stress. Chemosphere 2021, 276, 130130. [Google Scholar] [CrossRef]
- Chen, Q.; Cao, X.; Liu, B.; Nie, X.; Liang, T.; Suhr, J.; Ci, L. Effects of Functional Carbon Nanodots on Water Hyacinth Response to Cd/Pb Stress: Implication for Phytoremediation. J. Environ. Manag. 2021, 299, 113624. [Google Scholar] [CrossRef]
- Kumar, A.A.; Kumar, S.K.N.; Fernandez, R.E. Real Time Sensing of Soil Potassium Levels Using Zinc Oxide-Multiwall Carbon Nanotube-Based Sensors. IEEE Trans. NanoBioscience 2021, 20, 50–56. [Google Scholar] [CrossRef]
- Kumar, M.; Kaur, N.; Singh, N. Colorimetric Nanozyme Sensor Array Based on Metal Nanoparticle-Decorated CNTs for Quantification of Pesticides in Real Water and Soil Samples. ACS Sustain. Chem. Eng. 2024, 12, 728–736. [Google Scholar] [CrossRef]
- Loosli, F.; Yi, Z.; Wang, J.; Baalousha, M. Improved Extraction Efficiency of Natural Nanomaterials in Soils to Facilitate Their Characterization Using a Multimethod Approach. Sci. Total Environ. 2019, 677, 34–46. [Google Scholar] [CrossRef]
- Kah, M.; Tufenkji, N.; White, J.C. Nano-Enabled Strategies to Enhance Crop Nutrition and Protection. Nat. Nanotechnol. 2019, 14, 532–540. [Google Scholar] [CrossRef]
- Zhao, Z.; Wei, H.; Liu, S.; Xue, Z. Estimation of agricultural soil surface roughness based on ultrasonic echo signal characteristics. Soil Tillage Res. 2024, 239, 106038. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Directive on Soil Monitoring and Resilience. COM(2023) 416 Final, Section 4.2.3 (“Innovative Remediation Technologies”). 2023. Available online: https://environment.ec.europa.eu/topics/soil-health/soil-health_en (accessed on 10 July 2025).
- Joint Research Centre. Operational Framework for the EU Soil Mission Implementation. EUR 31517 EN, pp. 21–35, 2023. Publications Office of the EU. Available online: https://joint-research-centre.ec.europa.eu/eu-soil-observatory-euso_en (accessed on 1 January 2025).
- NANOREM Consortium. Final Publishable Summary Report: Nanoremediation for Soil and Water. European Commission Grant Agreement No. 309517. 2016. Available online: https://cordis.europa.eu/project/id/309517 (accessed on 1 January 2025).
- National Institute of Food and Agriculture (NIFA). Next-Generation Nanotechnology in Agriculture. USDA Project Portfolio: Grant No. A1511. 2017. Available online: https://www.nifa.usda.gov/data/data-gateway?path=fastlink1.txt&id=anon&pass=&search=(GC=A1511)%2520AND%2520(IY=2017)&format=WEBTITLESG (accessed on 10 July 2025).
- Brazilian Agricultural Research Corporation (Embrapa). Fertgel Hydrogel for Nutrient and Water Management in Semi-Arid Tropics (Technical Bulletin No. 245). Embrapa Agroenergia: Brasília, Brazil, 2022. Available online: https://www.embrapa.br/agroenergia (accessed on 10 July 2025).





| Abiotic Stress Type | Conditions | Nanomaterial Type | Application Method | Concentration | Plant Species | Cultivation Method | Effects | Duration from Treatment to Harvest | References |
|---|---|---|---|---|---|---|---|---|---|
| Drought stress | CeO2 | Foliar spraying | 100 mg/L | Mung bean | Pot cultivation | Significantly reduced damage | 7–21 d | [171] | |
| ZnO | Foliar spraying | 50–150 ppm | Wheat | Pot cultivation | Significantly increased weights | 15 d | [172] | ||
| Cold stress | ZnO | Foliar spraying | 25–100 mg/L | Rice | Hydroponic cultivation | Significantly alleviated negative impacts | 22 d | [29] | |
| ZnO | Foliar spraying | 25–100 mg/L | Aromatic rice | Soil cultivation | significantly increased root dry weight, | 20 d | [173] | ||
| Low-light stress | Light intensity reduced by 67% | SiO2 | Foliar spraying | 0–300 mg/L | Maize | Hydroponic cultivation | significantly reduced H2O2 content | 13 d | [174] |
| Salt stress | Zn | Seed priming | 0–100 ppm | Wheat | Pot cultivation | reducing osmotic stress and regulating growth | 90 d | [175] | |
| NaCl | FeO | Foliar spraying | 0–100 mg/kg | Peanut | Hydroponic cultivation | 50 mg/L Significantly improved growth parameters | 10 d | [176] | |
| Heavy metal stress | Cd | Si | Foliar spraying | 10 mM | Maize | Pot cultivation | Significantly enhanced agronomic and physiological traits | 15 d | [177] |
| Cd | Se | Foliar spraying | 0–40 mg/L | Wheat | Pot cultivation | Se-NPs application alleviated negative impacts. | Post-tillering to flowering stage | [178] | |
| Cr | SiO2 | Seed priming | 400 mg/L | Brassica napus | Hydroponic cultivation | significantly reduced Cr accumulation in leaves/roots | 7 d | [179] | |
| Cr | CeO2 | Foliar spraying | 0–50 mg/L | Sunflower | Pot cultivation | Significantly promoted plant growth and biomass yield | 4 m | [180] | |
| As, Cd | ZnO | Soil mixing | 100 mg/kg | Rice | Flooded pot cultivation | Significantly reduced total As content in roots and stems | 45 d | [181] | |
| Combined stresses | Saline-alkali stress, Cd | P(AA-co-AM)/XLG hydrogel | Soil mixing | 1%, 5% | Suaeda salsa | Pot cultivation | 5% treatment significantly improved Cd removal efficiency | 60 d | [182] |
| Cd, drought | Si | Foliar spraying | 25–100 mg/L | Wheat | Pot cultivation | Promoted wheat growth and yield | 110 d | [183] | |
| Cd, alkaline | CeO2 | Soil mixing | 0–1000 mg/kg | Wheat | Pot cultivation | beneficial to wheat growth | 154 d | [184] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wang, S.; Lai, H.; Deng, L.; Zhong, Q.; Okoye, C.O.; Niu, Q.; Jing, Y.; Wang, J.; Jiang, J. Nano-Biotechnology in Soil Remediation: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. Nanomaterials 2025, 15, 1743. https://doi.org/10.3390/nano15221743
Chen X, Wang S, Lai H, Deng L, Zhong Q, Okoye CO, Niu Q, Jing Y, Wang J, Jiang J. Nano-Biotechnology in Soil Remediation: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. Nanomaterials. 2025; 15(22):1743. https://doi.org/10.3390/nano15221743
Chicago/Turabian StyleChen, Xunfeng, Shuoqi Wang, Huijuan Lai, Linjing Deng, Qin Zhong, Charles Obinwanne Okoye, Qijian Niu, Yanping Jing, Juncai Wang, and Jianxiong Jiang. 2025. "Nano-Biotechnology in Soil Remediation: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance" Nanomaterials 15, no. 22: 1743. https://doi.org/10.3390/nano15221743
APA StyleChen, X., Wang, S., Lai, H., Deng, L., Zhong, Q., Okoye, C. O., Niu, Q., Jing, Y., Wang, J., & Jiang, J. (2025). Nano-Biotechnology in Soil Remediation: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. Nanomaterials, 15(22), 1743. https://doi.org/10.3390/nano15221743

