Photo/Electrocatalysis Applications: Green Processes and Sustainable Nanomaterials

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Energy and Catalysis".

Deadline for manuscript submissions: closed (31 December 2024) | Viewed by 1246

Special Issue Editors


grade E-Mail Website
Guest Editor
Department of Chemistry and Biology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
Interests: photo-response nanomaterials for energy and the environment; carbon dots and their applications
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Beijing Institute of Technology, Beijing, China
Interests: the chemistry of semiconductor hetero-nanostructures for clean photovoltaic energy

Special Issue Information

Dear Colleagues,

Photo/electrocatalysis plays an important role in a diverse range of applications, including emerging technologies related to clean energy, sustainability, and the petrochemical industry, such as water splitting, CO2 reduction, nitrogen fixation, pollutant treatments, energy conversion, and organic synthesis. In nature, photosynthesis is achieved through the construction of a hierarchical nanostructure to enable broad light absorption and highly efficient charge transfer processes. In the field of energy conversion, photo/electrocatalytic systems based on rationally designed, hierarchical, nanostructured materials have emerged for the conversion of light, electric, and chemical energy. In this sense, the rational design and preparation of photo/electrocatalytic materials with tailored structures and functions and the fundamental understanding of both the materials’ work mechanism and the interfaces between solid/solid and solid/liquid systems are crucial for the development of novel photo/electrocatalytic materials, devices, and systems.

Therefore, this Special Issue provides an international platform for scholars to present and discuss their latest research and prospective experiments on nanostructured photo/electrocatalytic materials. This issue will address the latest advances in the design and construction of novel photo/electrocatalysts, our fundamental understanding of photo/electrocatalytic mechanisms, and their theoretical modeling and simulation.

Prof. Dr. Zaicheng Sun
Prof. Dr. Jiatao Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photocatalyst
  • electrocatalyst
  • H2 production
  • CO2 reduction reaction
  • NH3 production
  • photo redox reaction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 3513 KiB  
Article
Picolinamide Functionalization on Carbon Nitride Edges for Enhanced Charge Separation and Photocatalytic Hydrogen Evolution
by Peiru Li, Siyuan Guo, Yunan Liu, Yanhong Lin and Tengfeng Xie
Nanomaterials 2025, 15(5), 361; https://doi.org/10.3390/nano15050361 - 26 Feb 2025
Viewed by 179
Abstract
The periodical distribution of N and C atoms in carbon nitride (CN) not only results in localized electrons in each tri-s-triazine unit, but oxidation and reduction sites are in close contact spatially, resulting in severe carrier recombination. Herein, the hydrothermal method was first [...] Read more.
The periodical distribution of N and C atoms in carbon nitride (CN) not only results in localized electrons in each tri-s-triazine unit, but oxidation and reduction sites are in close contact spatially, resulting in severe carrier recombination. Herein, the hydrothermal method was first employed to synthesize carbon nitride (HCN), and then picolinamide (Pic) molecules were introduced at the edge of the carbon nitride so that the photo-generated electrons of the whole structure of the carbon nitride system were transferred from the center to the edge, which effectively promoted the separation of photo-generated carriers and inhibited the recombination of carriers in the structure. The introduced picolinamide not only changed the π-conjugated structure of the entire system but also acted as an electron-withdrawing group to promote charge transfer. The photocatalytic hydrogen evolution rate (HER) of the optimized HCN-Pic-1:1 sample could reach 918.03 μmolg−1 h−1, which was 11.8 times higher than that of the HCN, and the performance also improved. Full article
Show Figures

Figure 1

18 pages, 2952 KiB  
Article
Tailoring Metal–Oxide Interfaces via Selectively CeO2-Decorated Pd Nanocatalysts with Enhanced Catalytic Performance
by Ziwen Liu, Guizhen Zhang, Lijuan Niu, Zaicheng Sun, Zhenguo Li and Hong He
Nanomaterials 2025, 15(3), 197; https://doi.org/10.3390/nano15030197 - 27 Jan 2025
Viewed by 628
Abstract
Metal–oxide interfaces play a prominent role in heterogeneous catalysis. Tailoring the metal–oxide interfaces effectively enhance the catalytic activities and thermal stability of noble metal catalysts. In this work, polyvinyl alcohol-protected reduction and L-arginine induction methods are adopted to prepare Pd catalysts (Pd/Al2 [...] Read more.
Metal–oxide interfaces play a prominent role in heterogeneous catalysis. Tailoring the metal–oxide interfaces effectively enhance the catalytic activities and thermal stability of noble metal catalysts. In this work, polyvinyl alcohol-protected reduction and L-arginine induction methods are adopted to prepare Pd catalysts (Pd/Al2O3-xCeO2) that are selectively decorated by CeO2, which form core–shell-like structures and generate more Pd-CeO2 interfacial sites, so that the three-way catalytic activity of Pd/Al2O3-xCeO2 catalysts is obviously significantly enhanced due to more adsorption oxygen at the interface of Pd-CeO2 and good low-temperature reducibility. At the moment, the Pd/Al2O3-xCeO2 catalysts exhibit excellent thermal stability after being calcined at 900 °C for 5 h, owing to the Pd species being highly redispersed on CeO2 and part of the Pd species being incorporated into the lattice of CeO2. This is a major reason for the Pd/Al2O3-xCeO2 catalysts to maintain high catalytic activity after aging at high temperatures. It is concluded that the metal–oxide interfaces and the interaction between Pd NPs and CeO2 are responsible for the excellent catalytic performance and stability of Pd/Al2O3-xCeO2 catalysts in three-way reactions. Full article
Show Figures

Figure 1

Back to TopTop