molecules-logo

Journal Browser

Journal Browser

Exclusive Feature Papers in Physical Chemistry, 3nd Edition

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Physical Chemistry".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 1120

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing, China
Interests: atmospheric chemistry; aerosols; kinetics; spectroscopy; environmental catalysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to announce a new Special Issue entitled “Exclusive Feature Papers in Physical Chemistry, 3nd Edition”. This Special Issue will provide a collection of high-quality papers (original research articles or comprehensive reviews) published in open access format by Editorial Board Members or prominent scholars invited by the Editorial Office and the Guest Editor. We aim to gather articles that present innovations related to the field of physical chemistry in order to contribute to the scientific community, and also aim to provide a platform for the dissemination of important research findings and ideas in the field.

Prof. Dr. Maofa Ge
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • catalysis
  • energy electrochemistry
  • kinetic
  • interface chemistry
  • biophysical chemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 1805 KiB  
Article
Diversity of Molecular–Network Conformations in the Over-Stoichiometric Arsenoselenides Covering a Full Thioarsenides Row As4Sen (0 ≤ n ≤ 6)
by Oleh Shpotyuk, Malgorzata Hyla, Zdenka Lukáčová Bujňáková, Yaroslav Shpotyuk and Vitaliy Boyko
Molecules 2025, 30(9), 1963; https://doi.org/10.3390/molecules30091963 - 29 Apr 2025
Abstract
Molecular network conformations in the over-stoichiometric arsenoselenides of canonical AsxSe100−x system (40 ≤ x ≤ 100) covering a full row of thioarsenide-type As4Sen entities (0 ≤ n ≤ 6) are analyzed with ab initio quantum-chemical modeling employing [...] Read more.
Molecular network conformations in the over-stoichiometric arsenoselenides of canonical AsxSe100−x system (40 ≤ x ≤ 100) covering a full row of thioarsenide-type As4Sen entities (0 ≤ n ≤ 6) are analyzed with ab initio quantum-chemical modeling employing cluster-simulation code CINCA. Native (melt-quenching-derived) and nanostructurization-driven (activated by nanomilling) polymorphic and polyamorphic transitions initiated by decomposition of the thioarsenide-type As4Sen cage molecules and incorporation of their remnants into a newly polymerized arsenoselenide network are identified on the developed map of molecular network clustering in a binary As-Se system. Within this map, compositional counter lines corresponding to preferential molecular or network-forming tendencies in the examined arsenoselenides are determined, explaining that network-crystalline conformations prevail in the boundary compositions corresponding to n = 6 and n = 0, while molecular-crystalline ones dominate inside the rows corresponding to n = 4 and n = 3. A set of primary and secondary equilibrium lines is introduced in the developed clustering map to account for inter-phase equilibria between the most favorable (regular) and competitive (irregular) thioarsenide phases. Straightforward interpretation of decomposition reactions accompanying induced crystallization and amorphization (reamorphization) in the arsenoselenides is achieved, employing disproportionality analysis of thioarsenide-type molecular network conformations within the reconstructed clustering map. The preference of network clustering at the boundaries of the As4Sen row (at n = 6 and n = 0) disturbs inter-phase equilibria inside this row, leading to unexpected anomalies, such as absence of stable tetra-arsenic triselenide As4Se5 molecular-crystalline species; polyamorphism in mechanoactivated As4Sen alloys (2 ≤ n ≤ 6); breakdown in the glass-forming ability of melt-quenching-derived arsenoselenides in the vicinity of tetra-arsenic biselenide As4Se2 composition; plastically and normally crystalline polymorphism in tetra-arsenic triselenide As4Se3-based thioarsenides, and so on. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Graphical abstract

16 pages, 5985 KiB  
Article
Mechanistic Study of Substituent Effect on Photoinduced O-C Bond Activation in Polycarbonate
by Xiao Huang, Yuuichi Orimoto and Yuriko Aoki
Molecules 2025, 30(8), 1839; https://doi.org/10.3390/molecules30081839 - 19 Apr 2025
Viewed by 146
Abstract
Photodegradation of polycarbonate (PC) is investigated based on quantum chemical methods with PC models to clarify the effect of substituents at different positions of phenyl rings on the carbonate O-C bond cleavage. Compared to the results without substituents on phenyl rings, the breakage [...] Read more.
Photodegradation of polycarbonate (PC) is investigated based on quantum chemical methods with PC models to clarify the effect of substituents at different positions of phenyl rings on the carbonate O-C bond cleavage. Compared to the results without substituents on phenyl rings, the breakage of the carbonate O-C bond is promoted or suppressed when the electron-donating or electron-withdrawing group is placed on the meta- or ortho-positions of the gem-dimethyl groups of phenyl rings, respectively. Moreover, the promotion and suppression of carbonate O-C bond scission are more significant if the substituents are located on the ortho-positions of the gem-dimethyl groups. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Graphical abstract

20 pages, 6235 KiB  
Article
Calorimetric Monitoring of the Sub-Tg Crystal Growth in Molecular Glasses: The Case of Amorphous Nifedipine
by Roman Svoboda
Molecules 2025, 30(8), 1679; https://doi.org/10.3390/molecules30081679 - 9 Apr 2025
Viewed by 279
Abstract
Non-isothermal differential scanning calorimetry (DSC) and Raman microscopy were used to study the crystallization behavior of the 20–50 μm amorphous nifedipine (NIF) powder. In particular, the study was focused on the diffusionless glass-crystal (GC) growth mode occurring below the glass transition temperature (T [...] Read more.
Non-isothermal differential scanning calorimetry (DSC) and Raman microscopy were used to study the crystallization behavior of the 20–50 μm amorphous nifedipine (NIF) powder. In particular, the study was focused on the diffusionless glass-crystal (GC) growth mode occurring below the glass transition temperature (Tg). The exothermic signal associated with the GC growth was indeed directly and reproducibly recorded at heating rates q+ ≤ 0.5 °C·min−1. During the GC growth, the αp polymorphic phase was exclusively formed, as confirmed via Raman microscopy. In addition to the freshly prepared NIF samples, the crystallization of the powders annealed for 7 h at 20 °C was also monitored—approx. 50–60% crystallinity was achieved. For the annealed NIF powders, the confocal Raman microscopy verified a proportional absence of the crystalline phase on the sample surface (indicating its dominant formation along the internal micro-cracks, which is characteristic of the GC growth). All DSC data were modeled in terms of the solid-state kinetic equation paired with the autocatalytic model; the kinetic complexity was described via reaction mechanism based on the overlap of 3–4 independent processes. The kinetic trends associated with decreasing q+ were identified, confirming the temperature-dependent kinetic behavior, and used to calculate a theoretical kinetic prediction conformable to the experimentally performed 7 h annealing at 20 °C. The theoretical model slightly underestimated the true extent of the GC growth, predicting the crystallinity to be 35–40% after 7 h (such accuracy is still extremely good in comparison with the standard kinetic approaches nowadays). Further research in the field of kinetic analysis should thus focus on the methodological ways of increasing the accuracy of considerably extrapolated kinetic predictions. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Figure 1

17 pages, 3207 KiB  
Article
Cyclohexane Vibronic States: A Combined VUV Spectroscopy and Theoretical Study
by Edvaldo Bandeira, Alessandra S. Barbosa, Nykola C. Jones, Søren V. Hoffmann, Márcio H. F. Bettega and Paulo Limão-Vieira
Molecules 2025, 30(7), 1493; https://doi.org/10.3390/molecules30071493 - 27 Mar 2025
Viewed by 208
Abstract
In this work, we provide results from a joint experimental and theoretical study of the vibronic features of cyclohexane (C6H12) in the photon energy range of 6.8–10.8 eV (182–115 nm). The high-resolution vacuum ultraviolet (VUV) photoabsorption measurements, together with [...] Read more.
In this work, we provide results from a joint experimental and theoretical study of the vibronic features of cyclohexane (C6H12) in the photon energy range of 6.8–10.8 eV (182–115 nm). The high-resolution vacuum ultraviolet (VUV) photoabsorption measurements, together with quantum chemical calculations at the time-dependent density functional theory (TDDFT) level, have helped to assign the major electronic excitations to mixed valence–Rydberg and Rydberg transitions. The C6H12 photoabsorption spectrum shows fine structure which has been assigned to CH2 scissoring, v3a1g, CH2 rocking, v4a1g, C–C stretching, v5a1g, and CCC bending/CC torsion, v24eg, modes. Molecular structure calculations at the DFT level for the neutral and cationic electronic ground-states have shown the relevant structural changes that are operative in the higher-lying electronic states. Photolysis lifetimes in the Earth’s atmosphere are shown to be irrelevant, while the main atmospheric sink mechanism is the reaction with the OH radical. Potential energy curves have been obtained at the TDDFT level of theory, showing the relevance of interchange character mainly involving the CH2 scissoring, v3a1g, and CH2 rocking, v4a1g, modes, while Jahn–Teller distortion yields weak vibronic coupling involving the non-totally symmetric CCC bending/CC torsion, v24eg, mode. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Graphical abstract

15 pages, 2517 KiB  
Article
Hydrogen Bonding of Trialkyl-Substituted Urea in Organic Environment
by Zuzana Morávková, Jiří Podešva, Valeriia Shabikova, Sabina Abbrent and Miroslava Dušková-Smrčková
Molecules 2025, 30(7), 1410; https://doi.org/10.3390/molecules30071410 - 21 Mar 2025
Viewed by 236
Abstract
Urea groups appear in many biomolecules and polymers. They have a significant impact on the properties of the materials because of their inherent strength and for their ability to participate in hydrogen bonds. Typically, in classical urea-based polymer materials, the urea groups occur [...] Read more.
Urea groups appear in many biomolecules and polymers. They have a significant impact on the properties of the materials because of their inherent strength and for their ability to participate in hydrogen bonds. Typically, in classical urea-based polymer materials, the urea groups occur in their N,N′-disubstituted state. Recently, bis-aspartates have been introduced as a novel type of hindered amine resins providing, upon crosslinking with (poly)isocyanates, the polyurea–polyaspartate thermosets (PU-ASPE) for coatings, sealants, polyelectrolytes, and other applications. These materials contain N,NN′-trisubstituted urea linkages in their structures. However, the infrared (IR) characterization of trisubstituted urea groups has not been documented in sufficient detail. Consequently, studies on the structure of aspartate-based polyurea materials often rely on data from N,N′-disubstituted ureas, which can lead to inaccurate conclusions. This study presents a detailed evaluation of the possible urea H-bonding states, focusing on the difference between the di- and trisubstituted species. Particularly, the attributions of the IR spectra to urea-based hydrogen bonding states are presented both in neat materials and their solutions. To systematize this study, we initially focus on a simple trisubstituted urea model system, tributyl urea (3BUA), and compare its spectral response with disubstituted N-butyl-N′-cyclohexyl urea (1B1CHUA) and trisubstituted N-butyl-N′,N′-dicyclohexyl urea (1B2CHUA), to elucidate their hydrogen-bonding fingerprints. This research provides a thorough understanding of the IR response of the di- and trisubstituted urea species and their structural characteristics in urea-containing materials. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Figure 1

Back to TopTop