molecules-logo

Journal Browser

Journal Browser

Topical Collection "Molecular Medicine"

Editors

Prof. Dr. Kamelija Zarkovic
E-Mail Website1 Website2
Collection Editor
Division of Pathology, Head of Neuropathology Unit, Medical School Clinical Hospital Centre, University of Zagreb, Croatia
Interests: pathology; CNS; histology; immunocytochemistry; biomarkers; electronmicroscopy
Prof. Dr. Neven Zarkovic
E-Mail Website1 Website2
Collection Editor
Laboratory for Oxidative Stress (LabOS), Rudjer Boskovic Institute, Bijenička 54, HR-10000 Zagreb, Croatia
Interests: oxidative stress; growth regulation; cancer; lipid peroxidation; 4-hydroxynonenal (HNE)
Special Issues and Collections in MDPI journals

Topical Collection Information

Dear Colleagues,

The scope of this Topical Collection on Molecular Medicine will cover a broad spectrum of molecular mechanisms underlying major human diseases, in particular chronic stress- and aging-associated disorders that make pathophysiological pillars for molecular aspects of cancer, (neuro)degenerative diseases, cardiovascular, inflammatory, and metabolic diseases. Molecular mechanisms of etiopathogenesis of such diseases revealed by translation model studies are intended to be complemented by original papers on experimental therapy findings focused on the molecular level. Finally, comprehensive reviews and genuine hypothesis will be welcomed, especially if molecular medicine aspects of major diseases are approached from the modern concepts of integrative biomedicine.

Prof. Dr. Neven Zarkovic
Prof. Dr. Kamelija Zarkovic
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Growth regulation
  • Hormesis
  • Biomarkers
  • Stress
  • Cancer
  • CNS
  • Lipid peroxidation
  • Pathophysiology

Published Papers (9 papers)

2020

Jump to: 2019

Open AccessArticle
Coixol Suppresses NF-κB, MAPK Pathways and NLRP3 Inflammasome Activation in Lipopolysaccharide-Induced RAW 264.7 Cells
Molecules 2020, 25(4), 894; https://doi.org/10.3390/molecules25040894 (registering DOI) - 18 Feb 2020
Abstract
Coixol, a plant polyphenol extracted from coix (Coix lachryma-jobi L.var.ma-yuen Stapf), has not been investigated for its anti-inflammatory effect. In this study, using a lipopolysaccharide (LPS)-induced macrophage cell model, we observed that coixol can effectively reduce the expression of interleukin (IL)-1β, [...] Read more.
Coixol, a plant polyphenol extracted from coix (Coix lachryma-jobi L.var.ma-yuen Stapf), has not been investigated for its anti-inflammatory effect. In this study, using a lipopolysaccharide (LPS)-induced macrophage cell model, we observed that coixol can effectively reduce the expression of interleukin (IL)-1β, IL-6, IL-18, tumor necrosis factor (TNF)-α, nitric oxide (NO), inducible nitric oxide synthases (iNOS), and cyclooxygenase (COX)-2, but had no effect on the expression of the anti-inflammatory mediator IL-10. Furthermore, we found that coixol inhibits mitogen-activated protein kinases (MAPKs), nuclear transcription factor κ B (NF-κB) pathways, and NOD-like receptor protein (NLRP) 3 inflammasome activation. In conclusion, the present study demonstrates that coixol exerts certain anti-inflammatory effects by inhibiting the expression of pro-inflammatory mediators in vitro. The mechanism of this effect was in part related to its ability to inhibit the activation of NF-κB, MAPKs pathways, and NLRP3 inflammasome. Full article
Show Figures

Figure 1

Open AccessFeature PaperArticle
The Appearance of 4-Hydroxy-2-Nonenal (HNE) in Squamous Cell Carcinoma of the Oropharynx
Molecules 2020, 25(4), 868; https://doi.org/10.3390/molecules25040868 (registering DOI) - 16 Feb 2020
Abstract
Tumor growth is associated with oxidative stress, which causes lipid peroxidation. The most intensively studied product of lipid peroxidation is 4-hydroxy-2-nonenal (HNE), which is considered as a “second messenger of free radicals” that binds to proteins and acts as a growth-regulating signaling factor. [...] Read more.
Tumor growth is associated with oxidative stress, which causes lipid peroxidation. The most intensively studied product of lipid peroxidation is 4-hydroxy-2-nonenal (HNE), which is considered as a “second messenger of free radicals” that binds to proteins and acts as a growth-regulating signaling factor. The incidence of squamous cell carcinoma of the oropharynx is associated with smoking, alcohol and infection of human papilloma virus (HPV), with increasing incidence world-wide. The aim of this retrospective study involving 102 patients was to determine the immunohistochemical appearance of HNE-protein adducts as a potential biomarker of lipid peroxidation in squamous cell carcinoma of the oropharynx. The HNE-protein adducts were detected in almost all tumor samples and in the surrounding non-tumorous tissue, while we found that HNE is differentially distributed in squamous cell carcinomas in dependence of clinical stage and histological grading of these tumors. Namely, the level of HNE-immunopositivity was increased in comparison to the normal oropharyngeal epithelium in well- and in moderately-differentiated squamous cell carcinoma, while it was decreasing in poorly differentiated carcinomas and in advanced stages of cancer. However, more malignant and advanced cancer was associated with the increase of HNE in surrounding, normal tissue. This study confirmed the onset of lipid peroxidation, generating HNE-protein adducts that can be used as a valuable bioactive marker of carcinogenesis in squamous cell carcinoma of the oropharynx, as well as indicating involvement of HNE in pathophysiological changes of the non-malignant tissue in the vicinity of cancer. Full article
Show Figures

Figure 1

Open AccessArticle
AT-MSCs Antifibrotic Activity is Improved by Eugenol through Modulation of TGF-β/Smad Signaling Pathway in Rats
Molecules 2020, 25(2), 348; https://doi.org/10.3390/molecules25020348 - 15 Jan 2020
Abstract
For hepatic failure, stem cell transplantation has been chosen as an alternative therapy, especially for mesenchymal stem cells (MSCs). The aim of this study was to investigate the effect of eugenol (EUG) on the in vivo antifibrotic activity of adipose tissue-derived MSCs (AT-MSCs) [...] Read more.
For hepatic failure, stem cell transplantation has been chosen as an alternative therapy, especially for mesenchymal stem cells (MSCs). The aim of this study was to investigate the effect of eugenol (EUG) on the in vivo antifibrotic activity of adipose tissue-derived MSCs (AT-MSCs) and the underlying mechanism. After characterization of MSCs, rats were divided into five groups, Group 1 (normal control), Group 2 (CCl4), Group 3 (CCl4 + AT-MSCs), Group 4 (CCl4 + EUG) and Group 5 (CCl4 + AT-MSCs + EUG). Biochemical and histopathological investigations were performed. Furthermore, expression of type 1 collagen, α-SMA, TGF-β1, Smad3 and P-Smad3 was estimated. Compared to the single treatment with AT-MSCs, the combination treatment of the fibrotic rats with AT-MSCs and EUG significantly improved the plasma fibrinogen concentration, IL-10 level and proliferating cell nuclear antigen expression, and also significantly decreased the serum levels of liver enzymes, IL-6, IL-1β, TNF-α, type III collagen, hyaluronic acid, hydroxyproline and the TGF-β growth factor. Furthermore, the combination treatment significantly decreased the hepatic expression of fibrotic markers genes (Type 1 collagen and α-SMA) and proteins (α-SMA, TGF-β1 and phospho-Smad3) more than the treatment with AT-MSCs alone. We demonstrated that the combination treatment with EUG and AT-MSCs strongly inhibited the advancement of CCl4-induced hepatic fibrosis, compared with AT-MSCs alone, through TGF-β/Smad pathway inhibition. This approach is completely novel, so more investigations are necessary to improve our perception of the underlying molecular mechanisms accountable for the effects of EUG on the antifibrotic potential of AT-MSCs. Full article
Show Figures

Figure 1

2019

Jump to: 2020

Open AccessArticle
Oroxin B Induces Apoptosis by Down-Regulating MicroRNA-221 Resulting in the Inactivation of the PTEN/PI3K/AKT Pathway in Liver Cancer
Molecules 2019, 24(23), 4384; https://doi.org/10.3390/molecules24234384 - 30 Nov 2019
Abstract
This study aims to investigate the anticancer effect of Oroxin B (OB) both in vitro and in vivo, and the molecular mechanism involved in microRNA-221 and the PI3K/Akt/PTEN pathway through modulation of apoptosis in Hepatocellular carcinoma (HCC). DEN-induced rats and HepG2 cells based [...] Read more.
This study aims to investigate the anticancer effect of Oroxin B (OB) both in vitro and in vivo, and the molecular mechanism involved in microRNA-221 and the PI3K/Akt/PTEN pathway through modulation of apoptosis in Hepatocellular carcinoma (HCC). DEN-induced rats and HepG2 cells based on the microfluidic chip were employed, while the mRNA and protein expression of microRNA-221, PI3K, p-Akt and PTEN were evaluated by RT-PCR and Western blot analysis. Based on Microfluidic Chip and DEN-induced rat model, OB effectively exerts anti-liver cancer effect both in vitro and in vivo, and the expression of miR-221 in OB treated groups was significantly lower than that in the control group (** p < 0.01). The RT-PCR and Western blot results suggested the PI3K mRNA and protein in OB treated groups were both lower than those in control group and indicated the overexpression of PTEN. Therefore, OB effectively exerts anticancer effects by positively regulating the PTEN gene and then inactivating the PI3K/Akt signaling pathway through down-regulating the expression of the microRNA-221, thereby inducing apoptosis of liver cancer cells. This study offers a theoretical evidence for further development and clinical guidance of OB as an anti-tumor agent. Full article
Show Figures

Graphical abstract

Open AccessArticle
Lunasin Improves the LDL-C Lowering Efficacy of Simvastatin via Inhibiting PCSK9 Expression in Hepatocytes and ApoE−/− Mice
Molecules 2019, 24(22), 4140; https://doi.org/10.3390/molecules24224140 - 15 Nov 2019
Abstract
Statins are the most popular therapeutic drugs to lower plasma low density lipoprotein cholesterol (LDL-C) synthesis by competitively inhibiting hydroxyl-3-methyl-glutaryl-CoA (HMG-CoA) reductase and up-regulating the hepatic low density lipoprotein receptor (LDLR). However, the concomitant up-regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) by [...] Read more.
Statins are the most popular therapeutic drugs to lower plasma low density lipoprotein cholesterol (LDL-C) synthesis by competitively inhibiting hydroxyl-3-methyl-glutaryl-CoA (HMG-CoA) reductase and up-regulating the hepatic low density lipoprotein receptor (LDLR). However, the concomitant up-regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) by statin attenuates its cholesterol lowering efficacy. Lunasin, a soybean derived 43-amino acid polypeptide, has been previously shown to functionally enhance LDL uptake via down-regulating PCSK9 and up-regulating LDLR in hepatocytes and mice. Herein, we investigated the LDL-C lowering efficacy of simvastatin combined with lunasin. In HepG2 cells, after co-treatment with 1 μM simvastatin and 5 μM lunasin for 24 h, the up-regulation of PCSK9 by simvastatin was effectively counteracted by lunasin via down-regulating hepatocyte nuclear factor 1α (HNF-1α), and the functional LDL uptake was additively enhanced. Additionally, after combined therapy with simvastatin and lunasin for four weeks, ApoE−/− mice had significantly lower PCSK9 and higher LDLR levels in hepatic tissues and remarkably reduced plasma concentrations of total cholesterol (TC) and LDL-C, as compared to each monotherapy. Conclusively, lunasin significantly improved the LDL-C lowering efficacy of simvastatin by counteracting simvastatin induced elevation of PCSK9 in hepatocytes and ApoE−/− mice. Simvastatin combined with lunasin could be a novel regimen for hypercholesterolemia treatment. Full article
Show Figures

Graphical abstract

Open AccessArticle
Cytotoxicity of Triterpene Seco-Acids from Betula pubescens Buds
Molecules 2019, 24(22), 4060; https://doi.org/10.3390/molecules24224060 - 09 Nov 2019
Abstract
The present study investigated the magnitude and mechanism of the cytotoxic effect on selected cancer cell lines of 3,4-seco-urs-4(23),20(30)-dien-3-oic acid (1), 3,4-seco-olean-4(24)-en-19-oxo-3-oic acid (2), and 3,4-seco-urs-4(23),20(30)-dien-19-ol-3-oic acid (3) isolated from downy [...] Read more.
The present study investigated the magnitude and mechanism of the cytotoxic effect on selected cancer cell lines of 3,4-seco-urs-4(23),20(30)-dien-3-oic acid (1), 3,4-seco-olean-4(24)-en-19-oxo-3-oic acid (2), and 3,4-seco-urs-4(23),20(30)-dien-19-ol-3-oic acid (3) isolated from downy birch (Betula pubescens) buds by carbon dioxide supercritical fluid extraction and gradient column chromatography. Cell viability in six human cancer lines exposed to these compounds was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was quantified by annexin V/propidium iodide staining of gastric cancer AGS and colorectal cancer DLD-1 cells. To evaluate the mechanism of apoptosis, the expression of apoptosis-related proteins was analyzed by Western blot. Compound 1 exhibited non-specific toxicity, while compounds 2 and 3 were specifically toxic to colon and stomach cancer cells. The toxicity of compounds 2 and 3 against these two cell lines was greater than for compound 1. Cleavage of caspase-8, -9, and -3 was found in AGS and DLD-1 cells treated with all three seco-acids, indicating the induction of apoptosis via extrinsic and intrinsic pathways. Therefore, triterpene seco-acids (13) decreased cell viability by apoptosis induction. AGS and DLD-1 cells were more susceptible to seco-acids with an oxidized C19 than normal fibroblasts. Hence, it made them a new group of triterpenes with potential anticancer activity. Full article
Show Figures

Graphical abstract

Open AccessArticle
Proinflammatory Effects of IL-1β Combined with IL-17A Promoted Cartilage Degradation and Suppressed Genes Associated with Cartilage Matrix Synthesis In Vitro
Molecules 2019, 24(20), 3682; https://doi.org/10.3390/molecules24203682 - 13 Oct 2019
Cited by 1
Abstract
Combinations of IL-1β and other proinflammatory cytokines reportedly promote the severity of arthritis. We aimed to investigate the effects of IL-1β combined with IL-17A on cartilage degradation and synthesis in in vitro models. Cartilage explant degradation was determined using sulfated glycosaminoglycans (S-GAGs) levels, [...] Read more.
Combinations of IL-1β and other proinflammatory cytokines reportedly promote the severity of arthritis. We aimed to investigate the effects of IL-1β combined with IL-17A on cartilage degradation and synthesis in in vitro models. Cartilage explant degradation was determined using sulfated glycosaminoglycans (S-GAGs) levels, matrix metalloproteinase (MMP13) gene expression, uronic acid, and collagen contents. Cell morphology and accumulation of proteoglycans were evaluated using hematoxylin-eosin and safranin O staining, respectively. In the pellet culture model, expressions of cartilage-specific anabolic and catabolic genes were evaluated using real-time qRT-PCR. Early induction of MMP13 gene expression was found concomitantly with significant S-GAGs release. During the prolonged period, S-GAGs release was significantly elevated, while MMP-13 enzyme levels were persistently increased together with the reduction of the cartilaginous matrix molecules. The pellet culture showed anabolic gene downregulation, while expression of the proinflammatory cytokines, mediators, and MMP13 genes were elevated. After cytokine removal, these effects were restored to nearly basal levels. This study provides evidence that IL-1β combined with IL-17A promoted chronic inflammatory arthritis by activating the catabolic processes accompanied with the suppression of cartilage anabolism. These suggest that further applications, which suppress inflammatory enhancers, especially IL-17A, should be considered as a target for arthritis research and therapy. Full article
Show Figures

Figure 1

Open AccessArticle
The Thioredoxin System is Regulated by the ASK-1/JNK/p38/Survivin Pathway During Germ Cell Apoptosis
Molecules 2019, 24(18), 3333; https://doi.org/10.3390/molecules24183333 - 12 Sep 2019
Abstract
The aim is to explore the mechanism of the apoptosis signal-regulating kinase-1 (ASK-1) signaling pathway and the involvement of the thioredoxin (Trx) system during testicular ischemia reperfusion injury (tIRI) by using ASK-1 specific inhibitor, NQDI-1. Male Sprague-Dawley rats (n = 36, 250–300 g) [...] Read more.
The aim is to explore the mechanism of the apoptosis signal-regulating kinase-1 (ASK-1) signaling pathway and the involvement of the thioredoxin (Trx) system during testicular ischemia reperfusion injury (tIRI) by using ASK-1 specific inhibitor, NQDI-1. Male Sprague-Dawley rats (n = 36, 250–300 g) were equally divided into 3 groups: sham, tIRI, and tIRI + NQDI-1 (10 mg/kg, i.p, pre-reperfusion). For tIRI induction, the testicular cord and artery were occluded for 1 h followed by 4 h of reperfusion. Histological analyses, protein immunoexpression, biochemical assays, and real-time PCR were used to evaluate spermatogenesis, ASK-1/Trx axis expression, enzyme activities, and relative mRNA expression, respectively. During tIRI, ipsilateral testes underwent oxidative stress indicated by low levels of superoxide dismutase (SOD) and Glutathione (GSH), increased oxidative damage to lipids and DNA, and spermatogenic damage. This was associated with induced mRNA expression of pro-apoptosis genes, downregulation of antiapoptosis genes, increased caspase 3 activity and activation of the ASK-1/JNK/p38/survivin apoptosis pathway. In parallel, the expression of Trx, Trx reductase were significantly reduced, while the expression of Trx interacting protein (TXNIP) and the NADP+/ nicotinamide Adenine Dinucleotide phosphate (NADPH) ratio were increased. These modulations were attenuated by NQDI-1 treatment. In conclusion, the Trx system is regulated by the ASK-1/Trx/TXNIP axis to maintain cellular redox homeostasis and is linked to tIRI-induced germ cell apoptosis via the ASK-1/JNK/p38/survivin apoptosis pathway. Full article
Show Figures

Graphical abstract

Open AccessArticle
Melatonin Inhibits Apoptosis and Oxidative Stress of Mouse Leydig Cells via a SIRT1-Dependent Mechanism
Molecules 2019, 24(17), 3084; https://doi.org/10.3390/molecules24173084 - 25 Aug 2019
Cited by 1
Abstract
The purpose of the present study is to examine the effects of melatonin on apoptosis and oxidative stress in mouse Leydig cells and to elucidate the mechanisms responsible for these effects. Our results indicated that 10 ng/mL of melatonin significantly promoted cell viability, [...] Read more.
The purpose of the present study is to examine the effects of melatonin on apoptosis and oxidative stress in mouse Leydig cells and to elucidate the mechanisms responsible for these effects. Our results indicated that 10 ng/mL of melatonin significantly promoted cell viability, the ratio of EdU-positive (5-Ethynyl-2′-deoxyuridine) cells, and increased the mRNA expression of proliferating cell nuclear antigen (PCNA), cyclin D1(CCND1), and cell division control protein 42 (CDC42) (p < 0.05). We also observed that melatonin inhibited apoptosis of mouse Leydig cells, accompanied with increased B-cell lymphoma-2 (BCL-2) and decreased BCL2 associated X (BAX) mRNA and protein expression. Moreover, addition of melatonin significantly decreased the reactive oxygen species (ROS) production and malondialdehyde (MDA) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels, while it increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels (p < 0.05). In addition, we also found that melatonin increased the expression of SIRT1 (Silent information regulator 1) (p < 0.05). To explore the role of SIRT1 signaling in melatonin-induced cells, mouse Leydig cells were pretreated with EX527, an inhibitor of SIRT1. The protective effects of melatonin on mouse Leydig cells were reversed by EX527, as shown by decreased cell proliferation and increased cell apoptosis and oxidative stress. In summary, our results demonstrated that melatonin inhibited apoptosis and oxidative stress of mouse Leydig cells through a SIRT1-dependent mechanism. Full article
Show Figures

Figure 1

Back to TopTop