molecules-logo

Journal Browser

Journal Browser

Special Issue "Insecticide, Acaricide, Repellent and Antimicrobial Development"

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: 31 December 2020.

Special Issue Editor

Dr. Giovanni Benelli
grade Website
Guest Editor
Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
Interests: biological control; biopesticides; ecotoxicology; green insecticides; insect behavior; insect vectors; mating disruption; mosquitoes; parasitoids; pheromones; repellents; ticks
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

The quick spread of invasive arthropod species worldwide, sometimes boosted by global warming and urbanization, outlines again the need of effective and timely pest and vector management tools. However, most of them rely on the use of synthetic insecticides and acaricides. This represents a major problem, since synthetic molecules often rely on a single mechanism of action, making resistance development quick and hard to deal with. Similarly, quick resistance development to widely used antimicrobials has been detected in a wide number of microbial pathogens and parasites. The massive, often inappropriate, employ of synthetic pesticides also leads to serious nontarget effects on human health and environment.

Further, bites from bloodsucker insects and mites can be avoided using repellents. In this scenario, discovering novel and effective products to repel mosquitoes, ticks and tabanids, just to cite some hot examples, is a challenge for public health. Natural products represent a huge source of highly effective active ingredients to be used for repellent purposes (e.g., Eucalyptus citriodora and the related molecule p-menthane-3,8-diol).

Therefore, the present Special Issue is dedicated to the development of effective and eco-friendly insecticides, acaricides, repellents, and antimicrobials, including products of natural origin (e.g., plant extracts, essential oils, selected bacterial and fungal metabolites). Research efforts shedding light on their field evaluation, modes of action, behavioral modifications at sublethal doses, and nontarget effects are particularly welcomed.

For studies focusing on natural product research, the authors are recommended to include a positive control in their experiments, as well as detailed information on the chemical composition of the tested products. Both original research and reviews will be considered for publication.

Prof. Dr. Giovanni Benelli
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • arthropod pests and vectors
  • eco-friendly pesticides
  • natural products
  • plant extracts
  • essential oils
  • mosquitoes
  • ticks
  • sublethal effects

Related Special Issue

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Essential Oil Compositions of Three Invasive Conyza Species Collected in Vietnam and Their Larvicidal Activities against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus
Molecules 2020, 25(19), 4576; https://doi.org/10.3390/molecules25194576 - 07 Oct 2020
Abstract
Mosquito-borne infectious diseases are a persistent problem in tropical regions of the world, including Southeast Asia. Vector control has relied principally on synthetic insecticides, but these have detrimental environmental effects and there is an increasing demand for plant-based agents to control insect pests. [...] Read more.
Mosquito-borne infectious diseases are a persistent problem in tropical regions of the world, including Southeast Asia. Vector control has relied principally on synthetic insecticides, but these have detrimental environmental effects and there is an increasing demand for plant-based agents to control insect pests. Invasive weedy plant species may be able to serve as readily available sources of essential oils, some of which may be useful as larvicidal agents for control of mosquito populations. We hypothesize that members of the genus Conyza (Asteraceae) may produce essential oils that may have mosquito larvicidal properties. The essential oils from the aerial parts of Conyza bonariensis, C. canadensis, and C. sumatrensis were obtained by hydrodistillation, analyzed by gas chromatography–mass spectrometry, and screened for mosquito larvicidal activity against Aedes aegypti, Ae. albopictus and Culex quinquefasciatus. The essential oils of C. canadensis and C. sumatrensis, both rich in limonene (41.5% and 25.5%, respectively), showed notable larvicidal activities against Ae. aegypti (24-h LC50 = 9.80 and 21.7 μg/mL, respectively) and Ae. albopictus (24-h LC50 = 18.0 and 19.1 μg/mL, respectively). These two Conyza species may, therefore, serve as sources for alternative, environmentally-benign larvicidal control agents. Full article
(This article belongs to the Special Issue Insecticide, Acaricide, Repellent and Antimicrobial Development)
Show Figures

Graphical abstract

Open AccessArticle
Larvicidal Enzyme Inhibition and Repellent Activity of Red Mangrove Rhizophora mucronata (Lam.) Leaf Extracts and Their Biomolecules against Three Medically Challenging Arthropod Vectors
Molecules 2020, 25(17), 3844; https://doi.org/10.3390/molecules25173844 - 24 Aug 2020
Abstract
The larvicidal potential of crude leaf extracts of Rhizophora mucronata, the red mangrove, using diverse solvent extracts of the plant against the early fourth instar larvae of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti mosquito vectors was analyzed. The acetone extract [...] Read more.
The larvicidal potential of crude leaf extracts of Rhizophora mucronata, the red mangrove, using diverse solvent extracts of the plant against the early fourth instar larvae of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti mosquito vectors was analyzed. The acetone extract of R. mucronata showed the greatest efficacy: for Cx. quinquefasciatus (LC50 = 0.13 mg/mL; LC90 = 2.84 mg/mL), An. stephensi (LC50 = 0.34 mg/mL; LC90 = 6.03 mg/mL), and Ae. aegypti (LC50 = 0.11 mg/mL; LC90 = 1.35 mg/mL). The acetone extract was further fractionated into four fractions and tested for its larvicidal activity. Fraction 3 showed stronger larvicidal activity against all the three mosquito larvae. Chemical characterization of the acetone extract displayed the existence of several identifiable compounds like phytol, 3,7,11,15-tetramethyl-2-hexadecen-1-ol, 1-hexyl-2-nitrocyclohexane, eicosanoic acid etc. Enzyme assay displayed that R. mucronata active F3-fractions exert divergent effects on all three mosquitos’ biochemical defensive mechanisms. The plant fractions displayed significant repellent activity against all the three mosquito vectors up to the maximum repellent time of 210 min. Thus, the bioactive molecules in the acetone extract of R. murconata leaves showed significant larvicidal and enzyme inhibitory activity and displayed novel eco-friendly tool for mosquito control. Full article
(This article belongs to the Special Issue Insecticide, Acaricide, Repellent and Antimicrobial Development)
Show Figures

Figure 1

Open AccessArticle
Fractionation of Biomolecules in Withania coagulans Extract for Bioreductive Nanoparticle Synthesis, Antifungal and Biofilm Activity
Molecules 2020, 25(15), 3478; https://doi.org/10.3390/molecules25153478 - 31 Jul 2020
Abstract
Withania coagulans contains a complex mixture of various bioactive compounds. In order to reduce the complexity of the plant extract to purify its phytochemical biomolecules, a novel fractionation strategy using different solvent combination ratios was applied to isolate twelve bioactive fractions. These fractions [...] Read more.
Withania coagulans contains a complex mixture of various bioactive compounds. In order to reduce the complexity of the plant extract to purify its phytochemical biomolecules, a novel fractionation strategy using different solvent combination ratios was applied to isolate twelve bioactive fractions. These fractions were tested for activity in the biogenic synthesis of cobalt oxide nanoparticles, biofilm and antifungal activities. The results revealed that plant extract with bioactive fractions in 30% ratio for all solvent combinations showed more potent bioreducing power, according to the observed color changes and the appearance of representative absorption peaks at 500–510 nm in the UV-visible spectra which confirm the synthesis of cobalt oxide nanoparticles (Co3O4 NPs). XRD diffraction was used to define the crystal structure, size and phase composition of the products. The fractions obtained using 90% methanol/hexane and 30% methanol/hexane showed more effectiveness against biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus so these fractions could potentially be used to treat bacterial infections. The 90% hexane/H2O fraction showed excellent antifungal activity against Aspergillus niger and Candida albicans, while the 70% methanol/hexane fraction showed good antifungal activity for C. albicans, so these fractions are potentially useful for the treatment of various fungal infections. On the whole it was concluded that fractionation based on effective combinations of methanol/hexane was useful to investigate and study bioactive compounds, and the active compounds from these fractions may be further purified and tested in various clinical trials. Full article
(This article belongs to the Special Issue Insecticide, Acaricide, Repellent and Antimicrobial Development)
Show Figures

Graphical abstract

Open AccessArticle
Effect of Naringenin and Its Derivatives on the Probing Behavior of Myzus persicae (Sulz.)
Molecules 2020, 25(14), 3185; https://doi.org/10.3390/molecules25143185 - 13 Jul 2020
Cited by 1
Abstract
Substances that alter insect behavior have attracted a lot of attention as potential crop protection agents. Naringenin (5,7,4′-trihydroxyflavanone) is a naturally occurring bioactive flavanone. We evaluated the influence of naringenin on aphid activities during individual phases of probing and feeding and the effect [...] Read more.
Substances that alter insect behavior have attracted a lot of attention as potential crop protection agents. Naringenin (5,7,4′-trihydroxyflavanone) is a naturally occurring bioactive flavanone. We evaluated the influence of naringenin on aphid activities during individual phases of probing and feeding and the effect of structural modifications of naringenin on its activity towards aphids. We monitored the probing behavior of Myzus persicae (Sulz.) (Hemiptera: Aphididae) using the Electrical Penetration Graph (EPG) technique. The chemical modifications were the substitution of hydrogen atoms with methyl, ethyl or pentyl groups and the replacement of the carbonyl group in naringenin and its derivatives with an oxime moiety. Depending on the substituents, the activity of naringenin-derived compounds varied in potency and mode of action. Naringenin was an attractant of moderate activity, which enhanced sap ingestion. The naringenin derivative with two methyl groups—7,4′-di-O-methylnaringenin—was a deterrent, which hindered aphid probing in non-phloem tissues. Naringenin oxime derivatives with methyl substituents—7,4′-di-O-methylnaringenin oxime, 7-O-methylnaringenin oxime, and 5,7,4′-tri-O-methylnaringenin oxime—and the derivative with a pentyl substituent—7-O-pentylnaringenin oxime—were strong attractants which stimulated aphid probing in non-phloem tissues and the ingestion of phloem sap. Full article
(This article belongs to the Special Issue Insecticide, Acaricide, Repellent and Antimicrobial Development)
Show Figures

Graphical abstract

Open AccessArticle
Spinasterol, 22,23-Dihydrospinasterol and Fernenol from Citrullus Colocynthis L. with Aphicidal Activity against Cabbage Aphid Brevicoryne Brassicae L.
Molecules 2020, 25(9), 2184; https://doi.org/10.3390/molecules25092184 - 07 May 2020
Abstract
Brevicoryne brassicae is a problematic pest in cabbage and other field crops. Synthetic pesticides are used to control this pest, but they are injurious for human health and the environment. The present study aimed to purify and identify the active compounds from Citrullus [...] Read more.
Brevicoryne brassicae is a problematic pest in cabbage and other field crops. Synthetic pesticides are used to control this pest, but they are injurious for human health and the environment. The present study aimed to purify and identify the active compounds from Citrullus colocynthis leaves with an appraisal of their efficacy against B. brassicae. Separation and purification were performed via different chromatographic techniques. Molecular analysis and chemical structures were recognized by mass spectrum (MS) and nuclear magnetic resonance (NMR), respectively. Moreover, in vitro and in vivo aphicidal activity was assessed using various concentrations, i.e., 6.25, 12.5, 25 and 50 µg/mL at 12, 24, 48 and 72 h exposure. The outcome shows that mass spectrum analyses of the purified compounds suggested the molecular formulae are C30H50O and C29H50O, C29H48O. The compounds were characterized as fernenol and a mixture of spinasterol, 22,23-dihydrospinasterol by 1H-NMR and 13C-NMR spectrum analysis. The toxicity results showed that the mixture of spinasterol and 22,23-dihydrospinasterol showed LC50 values of 32.36, 44.49 and 37.50 µg/mL by contact, residual and greenhouse assay at 72 h exposure, respectively. In contrast, fernenol recorded LC50 values as 47.99, 57.46 and 58.67 µg/mL, respectively. On the other hand, spinasterol, 22,23-dihydrospinasterol showed the highest mortality, i.e., 66.67%, 53.33% and 60% while, 30%, 23.33% and 25% mortality was recorded by fernenol after 72 h at 50 µg/mL by contact, residual and greenhouse assay, respectively. This study suggests that spinasterol, 22,23-dihydrospinasterol are more effective against B. brassicae which may be introduced as an effective and suitable substitute of synthetic chemical pesticides. Full article
(This article belongs to the Special Issue Insecticide, Acaricide, Repellent and Antimicrobial Development)
Show Figures

Graphical abstract

Open AccessArticle
Chemical Composition, Antifungal and Insecticidal Activities of the Essential Oils from Tunisian Clinopodium nepeta subsp. nepeta and Clinopodium nepeta subsp. glandulosum
Molecules 2020, 25(9), 2137; https://doi.org/10.3390/molecules25092137 - 02 May 2020
Cited by 2
Abstract
The present investigation was focused on the study of the chemical composition variability and biological activities of the essential oils from Clinopodium nepeta subsp. nepeta and subsp. glandulosum. Essential oils extraction was performed using hydrodistillation and the separation of the constituents was [...] Read more.
The present investigation was focused on the study of the chemical composition variability and biological activities of the essential oils from Clinopodium nepeta subsp. nepeta and subsp. glandulosum. Essential oils extraction was performed using hydrodistillation and the separation of the constituents was carried out by gas chromatography coupled with mass spectrometry (GC-MS). Antifungal activities were tested against Aspergillus flavus, Aspergillus terreus, Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes, and Candida albicans. Toxicity and repellency were evaluated against the stored product pests Tribolium confusum and Sitophilus zeamais. Both essential oils were characterized by a high content of oxygenated monoterpenes. Piperitone ranks first in the subspecies nepeta and piperitenone oxide is the dominant constituent in the subspecies glandulosum. All tested samples displayed noteworthy antifungal properties, with the highest activity observed for the essential oil of C. nepeta subsp. glandulosum, collected in Béni-M’tir, against T. mentagrophytes (MIC = 40 µg/mL). The essential oil samples of C. nepeta subsp. glandulosum were strongly repellent to the insect species (PR > 80%, after 2h) and highly toxic to S. zeamais reaching 97.5%–100% mortality after 24 h of exposure. In conclusion, this study showed considerable intra-specific changes in the quality of C. nepeta essential oils, which is reflected in different rates of antifungal and insecticidal activity. Full article
(This article belongs to the Special Issue Insecticide, Acaricide, Repellent and Antimicrobial Development)
Show Figures

Graphical abstract

Open AccessArticle
Potential Synergy between Spores of Metarhizium anisopliae and Plant Secondary Metabolite, 1-Chlorooctadecane for Effective Natural Acaricide Development
Molecules 2020, 25(8), 1900; https://doi.org/10.3390/molecules25081900 - 20 Apr 2020
Abstract
Date palm dust mites are important pests severely infesting valuable nutritious fruits (dates) of date palm. In search of an alternative to acaricides, joint action of Metarhizium anisopliae EBCL 02049 spores and 1-Chlorooctadecane was evaluated as a potential candidate for the management of [...] Read more.
Date palm dust mites are important pests severely infesting valuable nutritious fruits (dates) of date palm. In search of an alternative to acaricides, joint action of Metarhizium anisopliae EBCL 02049 spores and 1-Chlorooctadecane was evaluated as a potential candidate for the management of Oligonychus afrasiaticus through natural products. In this regard, in vitro tests were performed to evaluate the interaction of M. anisopliae spores with multiple doses of 1-Chlorooctadecane (0.8, 1.6, 2.4, 3.2, and 4.0 mg/mL). Compatibility bioassay results evidenced from vegetative growth (77.7–84.40 mm), sporulation (5.50–7.30 × 106 spores/mL), and germination (96.70–98.20%), revealed that all the tested doses are compatible (biological index > 82) with the spores of M. anisopliae. The impact of combined treatment of spores with 1-Chlorooctadecane in different proportions (Scheme I, II, III, and IV) compared to their sole application against O. afrasiaticus was evaluated by concentration–mortality response bioassays. Results showed that all the combined treatments revealed high mortality compared to the sole application, which showed relatively slow mortality response over time. Toxicity recorded from Scheme IV combinations (80% 1-Chlorooctadecane: 20% Spores), exhibited strong synergistic interaction (joint toxicity = 713). Furthermore, potent interactions have overcome the host antioxidant defense at the final stage of infection by tremendously reducing catalase, and superoxide dismutase activities. These experiments demonstrated fungal–toxin joint synergistic interaction as a promising date palm dust mite management option. Full article
(This article belongs to the Special Issue Insecticide, Acaricide, Repellent and Antimicrobial Development)
Show Figures

Graphical abstract

Open AccessArticle
Chemical Compositions, Mosquito Larvicidal and Antimicrobial Activities of Essential Oils from Five Species of Cinnamomum Growing Wild in North Central Vietnam
Molecules 2020, 25(6), 1303; https://doi.org/10.3390/molecules25061303 - 12 Mar 2020
Cited by 8
Abstract
Members of the genus Cinnamomum (Lauraceae) have aromatic volatiles in their leaves and bark and some species are commercially important herbs and spices. In this work, the essential oils from five species of Cinnamomum (C. damhaensis, C. longipetiolatum, C. ovatum [...] Read more.
Members of the genus Cinnamomum (Lauraceae) have aromatic volatiles in their leaves and bark and some species are commercially important herbs and spices. In this work, the essential oils from five species of Cinnamomum (C. damhaensis, C. longipetiolatum, C. ovatum, C. polyadelphum and C. tonkinense) growing wild in north central Vietnam were obtained by hydrodistillation, analyzed by gas chromatography and screened for antimicrobial and mosquito larvicidal activity. The leaf essential oil of C. tonkinense, rich in β-phellandrene (23.1%) and linalool (32.2%), showed excellent antimicrobial activity (MIC of 32 μg/mL against Enterococcus faecalis and Candida albicans) and larvicidal activity (24 h LC50 of 17.4 μg/mL on Aedes aegypti and 14.1 μg/mL against Culex quinquefasciatus). Cinnamomum polyadelphum leaf essential oil also showed notable antimicrobial activity against Gram-positive bacteria and mosquito larvicidal activity, attributable to relatively high concentrations of neral (11.7%) and geranial (16.6%). Thus, members of the genus Cinnamomum from Vietnam have shown promise as antimicrobial agents and as potential vector control agents for mosquitoes. Full article
(This article belongs to the Special Issue Insecticide, Acaricide, Repellent and Antimicrobial Development)
Show Figures

Graphical abstract

Back to TopTop