Special Issue "Nitrogen-Containing Molecules: Natural and Synthetic Products Including Coordination Compounds"

A special issue of Molbank (ISSN 1422-8599).

Deadline for manuscript submissions: 31 August 2020.

Special Issue Editors

Dr. Dimitrios Matiadis
Website
Guest Editor
Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
Interests: heterocyclic and medicinal chemistry; organic synthesis; antimicrobial agents; structure–activity relationships of bioactive compounds; curcuminoids; tetramic acids; pyrazolines
Dr. Eleftherios Halevas
Website
Guest Editor
Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
Interests: nanoparticle synthesis; material characterization; bioinorganic chemistry; coordination chemistry; nanodrug delivery; nanobiotechnology; nanomedicine; magnetic nanomaterials; metal complexation

Special Issue Information

Dear Colleagues,

Nitrogen constitutes one of the most crucial elements in synthetic compounds, both organic and coordination. After all, urea is considered to be the first synthetic organic compound (it was first prepared in 1828 by Friedrich Wöhler from a mixture of the inorganic compounds silver cyanate (AgOCN) and ammonium chloride (NH4Cl)).

From a medicinal chemistry viewpoint, nitrogen is a very common element in every major class of active pharmaceutical ingredients existing in heterocyclic and in acyclic molecules. Functional groups like amines, imines, nitriles, amides, and carbamates dominate the libraries of bioactive compounds, whereas the total number of unique drugs containing at least one nitrogen heterocycle among FDA-approved pharmaceuticals is 910 (84% among 1035 unique small-molecule drugs). The top-5 most frequent nitrogen heterocycles in this list are piperidine, pyridine, piperazine, β-lactam, and pyrrolidine.

Until today, the combined use of synthetic organic chemistry and coordination chemistry has generated a number of new and effective synthetic methods of high-rate product formation for important classes of coordination compounds of several nitrogen-containing ligands with numerous metal ions, giving rise to novel materials with exceptional physicochemical, biological, medicinal, catalytic, and optical properties.

For the Special Issue “Nitrogen-Containing Molecules: Natural and Synthetic Products Including Coordination Compounds”, we welcome the submission of research articles related to one or more of the following: design and synthesis; structural characterization by means of NMR; X-ray crystallography; or other preliminary but significant results including but not limited to biological evaluation, theoretical calculations/molecular mechanics/computational studies, material or physicochemical properties of nitrogen-containing molecules, and/or coordination compounds of nitrogen-containing molecules.

Dr. Dimitrios Matiadis
Dr. Eleftherios Halevas
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molbank is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 350 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nitrogen heterocycles
  • coordination compounds
  • amines
  • pyridine
  • Schiff bases
  • metal complexes
  • metal–organic coordination chemistry
  • organic chemistry

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessShort Note
Ethyl 11a,12-Dihydrobenzo[b]benzo[5,6][1,4]oxazino[2,3-e][1,4]oxazine-5a(6H)-carboxylate
Molbank 2020, 2020(3), M1149; https://doi.org/10.3390/M1149 - 21 Jul 2020
Abstract
The 11a,12-dihydrobenzo[b]benzo[5,6][1,4]oxazino[2,3-e][1,4]oxazine heterocyclic system has been used in the construction of heteropropellanes, which attracted much attention not only on the possible modification of drugs, but also for novel materials with unusual and important physical properties. In this communication, the [...] Read more.
The 11a,12-dihydrobenzo[b]benzo[5,6][1,4]oxazino[2,3-e][1,4]oxazine heterocyclic system has been used in the construction of heteropropellanes, which attracted much attention not only on the possible modification of drugs, but also for novel materials with unusual and important physical properties. In this communication, the reaction of ethyl 2-(hydroxyimino)propanoate 1 with disulfur dichloride and o-aminophenol, which gave ethyl 11a,12-dihydrobenzo[b]benzo[5,6][1,4]oxazino[2,3-e][1,4]oxazine-5a(6H)-carboxylate in moderate yield, was described. The structure of the newly synthesized compound was established by means of elemental analysis, high resolution mass-spectrometry, 1H, 13C NMR and IR spectroscopy, mass-spectrometry and X-ray analysis. Full article
Show Figures

Graphical abstract

Open AccessCommunication
(E)-(1-(4-Ethoxycarbonylphenyl)-5-(3,4-dimethoxyphenyl)-3-(3,4-dimethoxystyryl)-2-pyrazoline: Synthesis, Characterization, DNA-Interaction, and Evaluation of Activity Against Drug-Resistant Cell Lines
Molbank 2020, 2020(1), M1114; https://doi.org/10.3390/M1114 - 30 Jan 2020
Abstract
(E)-1-(4-Ethoxycarbonylphenyl)-5-(3,4-dimethoxyphenyl)-3-(3,4-dimethoxystyryl)-2-pyrazoline was synthesized via the cyclization reaction between the monocarbonyl curcuminoid (2E,6E)-2,6-bis(3,4-dimethoxybenzylidene)acetone and ethyl hydrazinobenzoate in high yield and purity (>95% by High-performance liquid chromatography (HPLC)). The compound has been fully characterized by 1H, 13C [...] Read more.
(E)-1-(4-Ethoxycarbonylphenyl)-5-(3,4-dimethoxyphenyl)-3-(3,4-dimethoxystyryl)-2-pyrazoline was synthesized via the cyclization reaction between the monocarbonyl curcuminoid (2E,6E)-2,6-bis(3,4-dimethoxybenzylidene)acetone and ethyl hydrazinobenzoate in high yield and purity (>95% by High-performance liquid chromatography (HPLC)). The compound has been fully characterized by 1H, 13C NMR, FTIR, UV-Vis and HRMS and its activity was evaluated in terms of its potential interaction with DNA as well as its cytotoxicity against resistant and non-resistant tumor cells. Both DNA thermal denaturation and DNA viscosity measurements revealed that a significant intercalation binding takes place upon treatment of the DNA with the synthesized pyrazoline, causing an increase in melting temperature by 3.53 ± 0.11 °C and considerable DNA lengthening and viscosity increase. However, neither re-sensitisation of Doxorubicin (DO X)-resistant breast cancer and multidrug resistance (MDR) reversal nor synergistic activity with DOX by potentially increasing the DOX cell killing ability was observed. Full article
Open AccessShort Note
2,2′-((1,4-Dimethoxy-1,4-dioxobutane-2,3-diylidene)bis(azanylylidene))bis(quinoline-3-carboxylic acid)
Molbank 2019, 2019(4), M1093; https://doi.org/10.3390/M1093 - 21 Nov 2019
Abstract
The title compound, 2,2′-((1,4-dimethoxy-1,4-dioxobutane-2,3-diylidene)bis(azanylylidene))bis(quinoline-3-carboxylic acid) was synthesized from isoxazolo[3,4-b]quinolin-3(1H)-one and dimethyl acetylenedicarboxylate (DMAD) via a double aza-Michael addition followed by [1,3]-H shifts. The product was characterized by infrared and nuclear magnetic resonance spectroscopy, as well as elemental analysis and [...] Read more.
The title compound, 2,2′-((1,4-dimethoxy-1,4-dioxobutane-2,3-diylidene)bis(azanylylidene))bis(quinoline-3-carboxylic acid) was synthesized from isoxazolo[3,4-b]quinolin-3(1H)-one and dimethyl acetylenedicarboxylate (DMAD) via a double aza-Michael addition followed by [1,3]-H shifts. The product was characterized by infrared and nuclear magnetic resonance spectroscopy, as well as elemental analysis and high-resolution mass spectrometry (HRMS). The proposed reaction mechanism was rationalized by density functional theory (DFT) calculations. Full article
Show Figures

Graphical abstract

Open AccessFeature PaperCommunication
Synthesis of 2-Cyanopyrimidines
Molbank 2019, 2019(4), M1086; https://doi.org/10.3390/M1086 - 22 Oct 2019
Cited by 1
Abstract
4,6-Dichloro-2-(methylthio)pyrimidine (7) was converted to 4-chloro-6-methoxy-2-(methylthio)pyrimidine (15) and 4,6-dimethoxy-2-(methylthio)pyrimidine (14). Chlorination of the latter with N-chlorosuccinimide (NCS) affords 5-chloro-4,6-dimethoxy-2-(methylthio)pyrimidine (16) in 56% yield. Both methylthiopyrimidines 15 and 14 were converted in two steps to [...] Read more.
4,6-Dichloro-2-(methylthio)pyrimidine (7) was converted to 4-chloro-6-methoxy-2-(methylthio)pyrimidine (15) and 4,6-dimethoxy-2-(methylthio)pyrimidine (14). Chlorination of the latter with N-chlorosuccinimide (NCS) affords 5-chloro-4,6-dimethoxy-2-(methylthio)pyrimidine (16) in 56% yield. Both methylthiopyrimidines 15 and 14 were converted in two steps to 4-chloro-6-methoxypyrimidine-2-carbonitrile (13) and 4,6-dimethoxypyrimidine-2-carbonitrile (12), respectively, after oxidation to sulfones and displacement of the sulfinate group with KCN. 4,6-Dimethoxypyrimidine-2-carbonitrile (12) was chlorinated with NCS to give 5-chloro-4,6-dimethoxypyrimidine-2-carbonitrile (10) in 53% yield. All new compounds were fully characterized. Full article
Open AccessCommunication
Reactions of Polychlorinated Pyrimidines with DABCO
Molbank 2019, 2019(4), M1084; https://doi.org/10.3390/M1084 - 14 Oct 2019
Abstract
The reaction of 2,4,5,6-tetrachloropyrimidine (4) and 4,5,6-trichloropyrimidine-2-carbonitrile (1) with DABCO (1 equiv.), in MeCN, at ca. 20 °C gives 2,4,5-trichloro-6-[4-(2-chloroethyl)piperazin-1-yl]pyrimidine (5) and 4,5-dichloro-6-[4-(2-chloroethyl)piperazin-1-yl]pyrimidine-2-carbonitrile (6) in 42% and 52% yields, respectively. The new compounds were fully characterized. Full article
Back to TopTop