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Abstract: The new 4-amino-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one was successfully prepared
through the Au/TiO2-catalyzed NaBH4 activation and chemoselective reduction of the new 4-nitro-
2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one. The latter was synthesized by the one-pot tandem
reactions of 6-hydroxy-5,7-dinitrocoumarin with p-tolylmethanol under Au/TiO2 catalysis. The
dinitrocoumarin was obtained by the nitration of 6-hydroxycoumarin with cerium ammonium
nitrate (CAN). The structure of the synthesized compounds was confirmed by FT-IR, HR-MS, 1H-
NMR and 13C-NMR analysis. Preliminary biological tests show low anti-lipid peroxidation activity
for the title compound.

Keywords: Au-nanoparticles; NaBH4; amino-substituted fused oxazolocoumarin; fused oxazolo-
coumarins; chemoselective reduction; o-hydroxynitrocoumarins

1. Introduction

Coumarin derivatives are widely distributed in nature, presenting interesting bio-
logical properties such as anticoagulant, anti-inflammatory, antivirus, anticancer, antiox-
idant or antidiabetic [1–7]. Fused coumarins also exhibit biological activity. Especially,
fused oxazolocoumarins have been tested for their antioxidant [8], antimicrobial [9], anti-
inflammatory [10], photosensitizing [11] or photoreleasing of aminolevulinic acid [12]
activities. There are several methodologies for the synthesis of fused oxazolocoumarins.
The condensation of o-aminohydroxycoumarins with aldehydes [9,13–15], acids [14], an-
hydrides [13,15]; or of o-amidohydroxycoumarins with anhydrides [16], POCl3 [17] or
P2O5 [18] led to those products. Furthermore, substituted fused oxazolocoumarins were
synthesized by the reduction of 4-hydroxy-3-nitrosocoumarin in acetic anhydride in the
presence of Pd/C [19], or of 6-hydroxy-4-methyl-5-nitrocoumarin acetate in acetic acid
with iron powder [20], or of 3-hydroxy-3-nitrocoumarins in liquid carboxylic acids in
the presence of Pd/C or PPh3 and P2O5 [8]. Recently, we prepared oxazolocoumarins
by one-pot tandem reactions of o-hydroxynitrocoumarins with benzyl alcohol in toluene
under catalytical conditions using gold nanoparticles supported on TiO2, by FeCl3 or by
silver nanoparticles supported on TiO2 [21].

Aminocoumarins are valuable building blocks for the synthesis of fused pyrido-
coumarins presenting significant biological activities such as antibacterial [22], antifun-
gal [23], antimalarial [24], antioxidant [25] and wound-healing [26]. Pyridocoumarins are
prepared from aminocoumarins through the one-pot Povarov reactions with aromatic alde-
hydes and cyclic enol ethers [27], the reactions with vinyl ketones [28], or under Vilsmeier
conditions [29] or with phenylacetylene and benzaldehydes under catalysis by I2 [30] or by
other Lewis acids [25,31]. The cycloisomerization of propargylaminocoumarins, prepared
from aminocoumarins, followed by oxidation, led also to pyridocoumarins under catalysis
by AgSbF6 [32] or BF3.Et2O [33] or Au/nanoparticles [34].
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The need for the synthesis of new compounds, to probe novel biological activity
containing a heterocyclic ring fused to the pyridocoumarin moiety, led us to the synthesis
of amino-substituted fused oxazolocoumarins. In continuation of our interest on fused
oxazolocoumarin [8,22] and pyridocoumarin [25,33,34] derivatives, we would like to report
here the synthesis of novel amine 7, through a selective reduction procedure, and the
biological evaluation of the products. The reactions studied and the synthesized products
are depicted in Scheme 1.
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2. Results and Discussion
2.1. Synthesis

The starting material for this procedure was the 6-hydroxy-5,7-dinitrocoumarin (4),
which was synthesized in 62% yield along with 6-hydroxy-5-nitrocoumarin (2) (22% yield)
and 6-hydroxy-7-nitrocoumarin (3) (14% yield) by nitration of 6-hydroxycoumarin (1) with
cerium ammonium nitrate (CAN) in CH3CN at r.t., according to the literature [35]. In this
paper, the authors obtained 3 in 50% yield using 1 equiv. of CAN, while by using 2 equiv. of
CAN they isolated compound 3 in 74% yield along with compound 2 (12%). No evidence
for the presence of the dinitro-derivative 4 was noticed. When we performed the above
reaction with 0.5 equiv. of CAN, only compound 2 [36] (10 %) was isolated along with 85%
of the starting compound 1. The spectral data of compound 4 resemble well with that given
in the literature [37], where the preparation was achieved by using nitric/acetic acids.

The reaction of 4 with p-tolylmethanol (5) in a sealed tube in toluene in the presence
of Au/TiO2 (4 mol%) at 150 ◦C led to 4-nitro-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one
(6) (45% yield) accompanied by 4-amino-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one (7)
(13%). This reaction was performed in analogy to our recent work on the synthesis of
fused oxazolocoumarins by the treatment of o-hydroxynitrocoumarins with benzyl alcohol
catalyzed by Au/TiO2 or Ag/TiO2 or FeCl3 [21]. During this process, a simultaneous re-
duction of nitro- to amine-group and oxidation of benzyl alcohol to benzaldehyde occurred,
followed by imine formation from the amine and benzaldehyde, cyclization by addition
of hydroxy-group to imine and oxidation of the intermediate oxazoline to oxazole. The
selective reduction of the 5-nitro group of coumarin in comparison to the 7-nitro group by
the intermediate gold-hydride [21] could be attributed to a possible complexation of gold
to the 3,4-double bond of coumarin. In the 1H-NMR spectrum of 6, there are two doublets
at 6.42 (1 H, J = 9.6 Hz) and 8.28 (1 H, J = 9.6 Hz) for the 3-H and 4-H, respectively, and
one singlet at 8.30 (1 H) for the 8-H. The chemical shift of 4-H (8.28 ppm) is downfield
in comparison to 4-H (7.69 ppm) of compound 4 due possibly to de-shielding from the
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oxazole-ring. The p-tolyl-group gave rise to the two doublets at 7.35 (1 H, J = 7.9 Hz) and
8.15 (1 H, J = 7.9 Hz) and one singlet at 2.43 (3 H). The HR-MS is m/z [M + H]+ calcd for
C17H11N2O5: 323.2789, found: 323.2791.

The reduction of nitro-derivative 6 with NaBH4 as hydride ion donor, in the presence
of the catalyst Au/TiO2, according to a recent publication for the use of Au-NPs in the
reduction of nitroarenes to anilines [38], resulted to the chemoselective preparation of
4-amino-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one (7) in 94% yield. This is a new com-
pound with absorptions in FT-IR at 3446, 3356 cm−1 for the NH2 group. There are two
doublets at 6.29 (1 H, J = 9.6 Hz) and 8.26 (1 H, J = 9.6 Hz) for the 3-H and 4-H, respectively,
in the 1H-NMR spectrum of 7, a broad singlet at 4.50 ppm for the NH2 protons and one
singlet at 6.61 (1 H) for the 8-H, see Supplementary Materials. This upfield shift is consistent
with the structure of 7 with the oxazole-ring fused at the 5,6-position and the NH2 group
at the 7-position of the coumarin moiety. If the oxazole ring is at the 6,7-position and the
amine group at the 5-position of the coumarin (in a structure isomeric to 7), the 8-H would
be expected to be above 7.0 ppm. In the case of 2-phenyl-6H-chromeno[6,7-d][1,3]oxazol-6-
one the 8-H is at 7.54 ppm [21]. The p-tolyl group gives rise to two doublets at 7.36 (1 H,
J = 7.9 Hz) and 8.15 (1 H, J = 7.9 Hz) and one singlet at 2.46 (3 H). In the 13C-NMR, there
is the upfield peak for the 8-C of the coumarin moiety at 98.1 ppm in comparison to the
carbons of nitro-compound 6, see Supplementary Materials. This peak is consistent with
the analogous peak (98.9 ppm) for 7-aminocoumarin [39]. The HR-MS is m/z [M + Na]+

calcd for C17H12NaN2O3: 315.2778, found: 315.2784.

2.2. Biology

Preliminary biological experiments were performed in vitro. Compounds 6 and 7 were
tested as possible antioxidant agents and inhibitors of soybean lipoxygenase according to
our previous published assays [10,25]. They did not present any interaction with DPPH
at 100 µM after 20 and 60 min under the reported experimental conditions. The anti-lipid
peroxidation activity was very low at 100 µM (less than 1% for compound 6 and 23% for
compound 7), as tested by the 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH)
protocol. No inhibition of soybean lipoxygenase was observed.

3. Materials and Methods
3.1. Materials

All the chemicals were procured from either Sigma–Aldrich Co. or Merck & Co., Inc.
(St. Louis, MO, USA) Melting points were determined with a Kofler hotstage apparatus
and are uncorrected. IR spectra were obtained with a Perkin–Elmer Spectrum BX spec-
trophotometer as KBr pellets. NMR spectra were recorded with an Agilent 500/54 (DD2)
(Santa Clara, CA, USA) (500 MHz and 125 MHz for 1H and 13C, respectively) using CDCl3
as solvent and TMS as an internal standard. J values are reported in Hz. Mass spectra were
determined with a LCMS-2010 EV Instrument (Shimadzu, Kyoto, Japan) under electrospray
ionization (ESI) conditions. HRMS (ESI-MS) were recorded with a ThermoFisher Scientific
model LTQ Orbitrap Discovery MS. Silica gel No. 60, Merck A.G. was used for column
chromatography.

3.2. Synthesis of 6-Hydroxy-5,7-dinitrocoumarin (4)

Cerium ammonium nitrate (CAN) (1.69 g, 3.08 mmol) in acetonitrile (10 mL) was
added in three portions over a period of 15 min to a solution of 6-hydroxycoumarin (1)
(0.5 g, 3.08 mmol) in acetonitrile (10 mL) under stirring. The reaction mixture was then
stirred for 30 min (TLC-monitored) and then quenched by pouring over ice (~50 g). It was
then repeatedly extracted with ethyl acetate (3 × 10 mL). The combined extracts washed
successively with sodium bisulfite solution, brine and water, and dried (Na2SO4). After
evaporation, the residue was subjected to column chromatography [silica gel, hexane: ethyl
acetate (1:1)] to give 2 and 3 as a mixture followed by the 6-hydroxy-5,7-dinitrocoumarin
(4) (0.48 g, 62 % yield). The mixture of 2 and 3 were subjected to a second column chro-
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matography [silica gel, dichloromethane] to give 6-hydroxy-5-nitrocoumarin (2) (0.14 g,
22 % yield) and 6-hydroxy-7-nitrocoumarin (3) (89 mg, 14% yield).

6-Hydroxy-5,7-Dinitrocoumarin (4): Red solid, m.p. 153–155 ◦C (dec) (EtOH), (lit. [37]:
155–157 ◦C).

6-Hydroxy-5-nitrocoumarin (2): Yellow solid, m.p. 159–161 ◦C (EtOH), (lit. [36]:
158–160 ◦C).

6-Hydroxy-7-nitrocoumarin (3): Yellow solid, m.p. 231–233 ◦C (EtOH), (lit. [36]:
232 ◦C).

3.3. Synthesis of 4-Nitro-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one (6)

The 6-hydroxy-5,7-dinitrocoumarin (4) (100 mg, 0.40 mmol), p-tolylmethanol (5)
(145.4 mg, 1.19 mmol), 1 % Au/TiO2 [156.2 mg (1.56 mg Au, 0.00793 mmol, 2 mol%)]
and toluene (4 mL) were added in a sealed tube. The resulted mixture was stirred at 150 ◦C
for 54 h. After cooling, the catalyst was removed by filtration and the solvent was con-
centrated under reduced pressure. The residue was subjected to column chromatography
[silica gel, hexane: ethyl acetate (2:1)] to give compound 6 (57 mg, 45 % yield) followed
by the 4-amino-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one (7) (15.2 mg, 13 % yield) and
unreacted compound 4 (40 mg, 40 %).

4-Nitro-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one (6): Light yellow solid, m.p.
90–92 ◦C (MeOH). IR (KBr): 3052, 2924, 2853, 1716 cm−1. 1H-NMR (500 MHz, CDCl3) δ:
2.43 (s, 3H, CH3), 6.42 (d, 1H, J = 9.6 Hz), 7.35 (d, 2H, J = 7.9 Hz), 8.15 (d, 2H, J = 7.9 Hz),
8.28 (d, 1H, J = 9.6 Hz), 8.30 (s, 1H). 13C-NMR (125 MHz, CDCl3) δ: 30.9, 111.1, 116.5, 117.5,
127.4, 127.67, 127.7, 129.9, 132.2, 136.8, 145.8, 146.0, 155.5, 160.6, 164.0. LC-MS (ESI): 320 [M
− H]−. HR-MS (ESI), (M.W.: 322): m/z [M + H]+ calcd for C17H11N2O5: 323.2789, found:
323.2791.

3.4. Synthesis of 4-Amino-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one (7)

The catalyst, 1% Au/TiO2 [12.2 mg (0.12 mg Au, 0.0006 mmol, 1 mol%)], was placed
in a 5 mL flask, followed by the addition of methanol (2 mL), nitro compound 6 (20 mg,
0.062 mmol) and NaBH4 (gradual addition because of hydrogen release (9.4 mg, 0.25 mmol)).
The reaction mixture was then stirred at room temperature for 1 h. After the completion of
the reaction (TLC-monitored), the slurry was filtered under reduced pressure to remove the
catalyst and washed with methanol (~5 mL). The filtrate was evaporated under vacuum to
afford the corresponding 4-amino-2-(p-tolyl)-7H-chromeno[5,6-d]oxazol-7-one, (7) (17 mg,
94 % yield): Light yellow solid, m.p. 177–179 ◦C (hexane/ethyl acetate). IR (KBr): 3446,
3356, 2924, 2852, 1725, 1634 cm−1. 1H-NMR (500 MHz, CDCl3) δ: 2.46 (s, 3H, CH3), 4.50
(brs, 2H), 6.29 (d, 1H, J = 9.6 Hz), 6.61 (s, 1H), 7.36 (d, 2H, J = 7.9 Hz), 8.15 (d, 2H, J =
7.9 Hz), 8.26 (d, 1H, J = 9.6 Hz). 13C-NMR (125 MHz, CDCl3) δ: 31.0, 98.1, 111.4, 116.5,
117.4, 127.3, 127.7, 129.8, 129.9, 139.2 146.1, 146.7, 148.9, 156.1, 160.0, 164.7. LC-MS (ESI):
315 [M + Na]+, 347 [M + Na + MeOH]+. HR-MS (ESI), (M.W.: 292): m/z [M + Na]+ calcd for
C17H12NaN2O3: 315.2778, found: 315.2784.

3.5. Biological Experiments: In Vitro Assays

The compounds were dissolved in DMSO.

• Antilipid peroxidation: the AAPH protocol was followed [25].
• Lipoxygenase inhibition: according to our previous protocol [25].
• Antioxidant activity: interaction with the stable free radical DPPH (final concen-

tration 0.05 mM) in ethanol absolute (final concentration of the tested compounds
0.1 mM) [25].

4. Conclusions

We demonstrated an efficient and chemoselective method for the synthesis of amino-
substituted fused oxazolocoumarins using Au-NPs catalysis in the presence of NaBH4
for the reduction of the corresponding nitro-substituted fused oxazolocoumarins. The
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preliminary biological assays pointed that compound 7 presents low anti-lipid peroxida-
tion activity.

Supplementary Materials: The following are available online, NMR and LC-MS (ESI) spectra of
compound 7.
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