Synthesis of 4-[(1H-Benzimidazol-2-yl)sulfanyl]benzaldehyde and 2-({4-[(1H-Benzimidazol-2-yl)sulfanyl]phenyl}methylidene)hydrazine-1-carbothioamide
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. 4-[(1H-Benzimidazol-2-yl)sulfanyl]benzaldehyde (3)
3.3. 2-({4-[(1H-Benzimidazol-2-yl)sulfanyl]phenyl}methylidene)hydrazine-1-carbothioamide (4)
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wubulikasimu, R.; Yang, Y.; Xue, F.; Luo, X.; Shao, D.; Li, Y.; Ye, W. Synthesis and Biological Evaluation of Novel Benzimidazole Derivatives Bearing a Heterocyclic Ring at 4/5 Position. Bull. Korean Chem. Soc. 2013, 34, 2297–2304. [Google Scholar] [CrossRef] [Green Version]
- Xiang, P.; Zhou, T.; Wang, L.; Sun, C.; Hu, J.; Zhao, Y.; Yang, L. Novel benzothiazole, benzimidazole and benzoxazole derivatives as potential antitumor agents: Synthesis and preliminary in vitro biological evaluation. Molecules 2012, 17, 873–883. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Tandon, V. Synthesis and biological activity of novel inhibitors of topoisomerase I: 2-Arylsubstituted 2-bis-1H-benzimidazoles. Eur. J. Med. Chem. 2011, 46, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Antoci, V.; Cucu, D.; Zbancioc, G.; Moldoveanu, C.; Mangalagiu, V.; Amariucai-Mantu, D.; Aricu, A.; Mangalagiu, I. Bis-(imidazole/benzimidazole)-pyridine derivatives: Synthesis, structure and antimycobacterial activity. Future Med. Chem. 2020, 12, 207–222. [Google Scholar] [CrossRef] [Green Version]
- Gobis, K.; Foks, H.; Serocki, M.; Augustynowicz-kope, E.; Ave, G. Synthesis and evaluation of in vitro antimycobacterial activity of novel 1H-benzo[d]imidazole derivatives and analogues Agnieszka Napi o. Eur. J. Med. Chem. 2015, 89, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, D.; Kumar, K.; Knudson, S.; Slayden, R.; Ojima, I. SAR studies on trisubstituted benzimidazoles as inhibitors of Mtb FtsZ for the development of novel antitubercular agents. J. Med. Chem. 2013, 56, 9756–9770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Lin, T.; Cory, J.; Cory, A.; Sartorelli, A. Synthesis and biological activity of 3- and 5-amino derivatives of pyridine-2-carboxaldehyde thiosemicarbazone. J. Med. Chem. 1996, 39, 2586–2593. [Google Scholar] [CrossRef] [PubMed]
- Tarasconi, P.; Capacchi, S.; Pelosi, G.; Cornia, M.; Albertini, R.; Bonati, A.; Dall’Aglio, P.; Lunghi, P.; Pinelli, S. Synthesis, spectroscopic characterization and biological properties of new natural aldehydes thiosemicarbazones. Bioorg. Med. Chem. 2000, 8, 157–162. [Google Scholar] [CrossRef]
- Kumar, G.K.; Chavarria, G.E.; Charlton-Sevcik, A.K.; Arispe, W.M.; MacDonough, M.T.; Strecker, T.E.; Chen, S.E.; Siim, B.G.; Chaplin, D.J.; Trawick, M.L. Design, synthesis, and biological evaluation of potent thiosemicarbazone based cathepsin L inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 1415–1419. [Google Scholar] [CrossRef] [PubMed]
- Fujii, N.; Mallari, J.P.; Hansell, E.J.; Mackey, Z.; Doyle, P.; Zhou, Y.; Gut, J.; Rosenthal, P.J.; McKerrow, J.H.; Guy, R.K. Discovery of potent thiosemicarbazone inhibitors of rhodesain and cruzain. Bioorg. Med. Chem. Lett. 2005, 15, 121–123. [Google Scholar] [CrossRef]
- Hu, W.X.; Zhou, W.; Xia, C.N.; Wen, X. Synthesis and anticancer activity of Thiosemicarbazone. Bioorg. Med. Chem. Lett. 2006, 16, 2213–2218. [Google Scholar] [CrossRef]
- Almutairi, M.S.; Zakaria, A.S.; Ignasius, P.P.; Al-Wabli, R.I.; Joe, I.H.; Attia, M.I. Synthesis, spectroscopic investigations, DFT studies, molecular docking and antimicrobial potential of certain new indole-isatin molecular hybrids: Experimental and theoretical approaches. J. Mol. Struct. 2018, 1153, 333–345. [Google Scholar] [CrossRef]
- Bakherad, Z.; Safavi, M.; Fassihi, A.; Sadeghi-Aliabadi, H.; Bakherad, M.; Rastegar, H.; Ghasemi, J.B.; Sepehri, S.; Saghaie, L.; Mahdavi, M. Anti-cancer, anti-oxidant and molecular docking studies of thiosemicarbazone indole-based derivatives. Res. Chem. Intermed. 2019, 45, 2827–2854. [Google Scholar] [CrossRef]
- Ishaq, M.; Taslimi, P.; Shafiq, Z.; Khan, S.; Salmas, R.E.; Zangeneh, M.M.; Saeed, A.; Zangeneh, A.; Sadeghian, N.; Asari, A.; et al. Synthesis, bioactivity and binding energy calculations of novel 3-ethoxysalicylaldehyde based thiosemicarbazone derivatives. Bioorg. Chem. 2020, 100, 103924. [Google Scholar] [CrossRef]
- Hassan, M.; Ghaffari, R.; Sardari, S.; Farahani, Y.F.; Mohebbi, S. Discovery of novel isatin-based thiosemicarbazones: Synthesis, antibacterial, antifungal, and antimycobacterial screening. Res. Pharm. Sci. 2020, 15, 281–290. [Google Scholar] [PubMed]
- Kshirsagar, A.; Toraskar, M.P.; Kulkarni, V.M.; Dhanashire, S.; Kadam, V. Microwave assisted synthesis of potential anti-infective and anticonvulsant thiosemicarbazones. Int. J. Chem. Tech. Res. 2009, 1, 696–701. [Google Scholar]
- Matsa, R.; Makam, P.; Kaushik, M.; Hoti, S.L.; Kannan, T. Thiosemicarbazone derivatives: Design, synthesis and in vitro antimalarial activity studies. Eur. J. Pharm. Sci. 2019, 137, 104986. [Google Scholar] [CrossRef]
- Oliveira, R.B.; Souza-Fagundes, E.M.; Soares, R.P.; Andrade, A.A.; Krettli, A.U.; Zani, C.L. Synthesis and antimalarial activity of semicarbazone and thiosemicarbazone derivatives. Eur. J. Med. Chem. 2008, 43, 1983–1988. [Google Scholar] [CrossRef]
- Oliveira, J.; Nonato, F.; Zafred, R.; Leite, N.; Ruiz, A.; Carvalho, J.; Silva, A.; Moura, R.; Lim, M. Evaluation of anti-inflammatory effect of derivative (E)-N-(4-bromophenyl)-2-(thiophen- 2-ylmethylene)-thiosemicarbazone. Biomed. Pharmacother. 2016, 80, 388–392. [Google Scholar] [CrossRef]
- Hałdys, K.; Latajka, R. Thiosemicarbazones with tyrosinase inhibitory activity. Med. Chem. Commun. 2019, 10, 378–389. [Google Scholar] [CrossRef]
- Santacruz, M.; Fabiani, M.; Castro, E.; Cavallaro, L.; Finkielsztein, L. Synthesis, antiviral evaluation and molecular docking studies of N4-aryl substituted/unsubstituted thiosemicarbazones derived from 1-indanones as potent anti-bovine viral diarrhea virus agents. Bioorg. Med. Chem. 2017, 25, 4055–4063. [Google Scholar] [CrossRef]
- Nguyen, D.; Le, T.; Bui, T. Antioxidant activities of thiosemicarbazones from substituted benzaldehydes and N-(tetra-O-acetyl-β-D-galactopyranosyl)thiosemicarbazide. Eur. J. Med. Chem. 2013, 60, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, J.; Montalbano, S.; Spadola, G.; Rogolino, D.; Pelosi, G.; Bisceglie, F.; Restivo, F.; Degola, F.; Serra, O.; Buschini, A.; et al. Antiaflatoxigenic Thiosemicarbazones as Crop-Protective Agents: A Cytotoxic and Genotoxic Study. J. Agric. Food Chem. 2019, 67, 10947–10953. [Google Scholar] [CrossRef] [PubMed]
- Sens, L.; Souza, A.; Pacheco, L.; Menegatti, A.; Mori, M.; Mascarello, A.; Nunes, R.; Terenzi, H. Synthetic thiosemicarbazones as a new class of Mycobacterium tuberculosis protein tyrosine phosphatase A inhibitors. Bioorg. Med. Chem. 2018, 26, 5742–5750. [Google Scholar] [CrossRef] [PubMed]
- Pedrido, R.; Gonzalez-Noya, A.M.; Romero, M.J.; Martinez-Calvo, M.; Lopez, M.V.; Gomez-Forneas, E.; Zaragoza, G.; Bermejo, M.R. Pentadentate thiosemicarbazones as versatile chelating systems. A comparative structural study of their metallic complexes. Dalton Trans. 2008, 47, 6776–6787. [Google Scholar] [CrossRef]
- Yu, Y.; Kalinowski, D.S.; Kovacevic, Z.; Siafakas, A.R.; Jansson, P.J.; Stefani, C.; Lovejoy, D.B.; Sharpe, P.C.; Bernhardt, P.V.; Richardson, D.R. Thiosemicarbazones from the old to new: Iron chelators that are more than just ribonucleotide reductase inhibitors. J. Med. Chem. 2009, 52, 5271–5294. [Google Scholar] [CrossRef] [PubMed]
- Koehler, A.N.; Stefan, E.; Caballero, F. Myc Modulators and Uses Thereof. U.S. Patent US10017520B2, 10 July 2018. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ubeid, M.T.; Thabet, H.K.; Abu Shuheil, M.Y. Synthesis of 4-[(1H-Benzimidazol-2-yl)sulfanyl]benzaldehyde and 2-({4-[(1H-Benzimidazol-2-yl)sulfanyl]phenyl}methylidene)hydrazine-1-carbothioamide. Molbank 2021, 2021, M1273. https://doi.org/10.3390/M1273
Ubeid MT, Thabet HK, Abu Shuheil MY. Synthesis of 4-[(1H-Benzimidazol-2-yl)sulfanyl]benzaldehyde and 2-({4-[(1H-Benzimidazol-2-yl)sulfanyl]phenyl}methylidene)hydrazine-1-carbothioamide. Molbank. 2021; 2021(3):M1273. https://doi.org/10.3390/M1273
Chicago/Turabian StyleUbeid, Mustafa Turki, Hamdy Khamees Thabet, and Mohamed Yousef Abu Shuheil. 2021. "Synthesis of 4-[(1H-Benzimidazol-2-yl)sulfanyl]benzaldehyde and 2-({4-[(1H-Benzimidazol-2-yl)sulfanyl]phenyl}methylidene)hydrazine-1-carbothioamide" Molbank 2021, no. 3: M1273. https://doi.org/10.3390/M1273
APA StyleUbeid, M. T., Thabet, H. K., & Abu Shuheil, M. Y. (2021). Synthesis of 4-[(1H-Benzimidazol-2-yl)sulfanyl]benzaldehyde and 2-({4-[(1H-Benzimidazol-2-yl)sulfanyl]phenyl}methylidene)hydrazine-1-carbothioamide. Molbank, 2021(3), M1273. https://doi.org/10.3390/M1273