Microorganisms Around Coal Mines and Their Application, 2nd Edition

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Environmental Microbiology".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 396

Special Issue Editor

School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
Interests: microbial community around coal mines; coal biotransformation; biogenic coal bed methane; coal-based solid waste recycling; ecological restoration of coal mines
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is a continuation of our previous Special Issue, “Microorganisms Around Coal Mines and Their Application” (https://www.mdpi.com/si/168805).

Coal mines have provided essential fuel and resources for industrial development throughout human history. However, coal mining and utilization also cause serious environmental problems. To cope with climate change and mitigation, coal’s clean utilization and related pollution treatment are attracting more attention around the world. Coal mines offer environments with a large diversity of microorganisms. These microbes play an essential role in many geochemical cycles associated with coal mines, such as sulfur and carbon cycles, organic matter decomposition, mineral weathering, and so on. The biochemical reaction process of these microorganisms provides some potential applications associated with coal mines, including the removal of harmful elements, high value-added product recovery, biogenic coal bed methane, etc. This Special Issue will provide a platform to display the latest results, progress, and summary of the microorganisms associated with coal mines and the application of research into coal clean utilization, ecological remediation, and so on.

Dr. Huan He
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microbial community around coal mines
  • bio-desulfurization of coal
  • bioleaching valuable elements from coal and its associated minerals
  • biotransformation of coal
  • biogenic coal bed methane
  • microbial treatment acid mine drainage from coal
  • coal mine microbial restoration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 11844 KiB  
Article
Manure-Amended One-Year-Reclamation Promoted Soil Bacterial Phylotypic and Phenotypic Shifts in a Typical Coal-Mining Area
by Hongjuan Zhang, Yanmeng Shang, Shuning Bai, Meihua Fan, Xiaolong Sui, Huisheng Meng, Xianjun Hao, Xiangying Wang, Yulin Liu, Yi Li, Jianping Hong and Jie Zhang
Microorganisms 2025, 13(4), 699; https://doi.org/10.3390/microorganisms13040699 - 21 Mar 2025
Viewed by 289
Abstract
The initial variations in soil bacteria at the very beginning of reclamation still remains unclear. This study investigates the impact on bacterial communities of eight different treatments, including uncultivated land, unfertilized cultivation, chemical fertilizer, chemical fertilizer + bacterial fertilizer, manure, manure + bacterial [...] Read more.
The initial variations in soil bacteria at the very beginning of reclamation still remains unclear. This study investigates the impact on bacterial communities of eight different treatments, including uncultivated land, unfertilized cultivation, chemical fertilizer, chemical fertilizer + bacterial fertilizer, manure, manure + bacterial fertilizer, manure + chemical fertilizer, and manure + chemical fertilizer + bacterial fertilizer, during the short-term reclamation of coal-mining soils. The results showed that total nitrogen, available phosphorus, soil organic carbon, microbial biomass carbon, and alkaline phosphatase activity were significantly increased in all fertilization treatments compared to uncultivated land (p < 0.05). All fertilization treatments other than chemical fertilizer harbored significantly higher activities of urease, catalase, and invertase than unfertilized cultivation (p < 0.05). The bacterial communities structures in manure-amended treatments significantly differed in uncultivated land and unfertilized cultivation and were phylotypically shifted from oligotrophic to Actinobacteria-dominant copiotrophic traits, accompanied with phenotypic succession of the enriching characteristics of Gram-positive, biofilms formation, and stress tolerance. The co-occurrence network in manure-amended treatments harbored a simple co-occurrence network, indicating more productive soils than in no-manure treatments. Manure amendment, total nitrogen, microbial biomass carbon, invertase, catalase, and soil moisture were the key driving factors. Our study underscores the bacterial initialization characteristics promoted by manure at the very beginning of coal-mining reclamation. Full article
(This article belongs to the Special Issue Microorganisms Around Coal Mines and Their Application, 2nd Edition)
Show Figures

Figure 1

Back to TopTop