Research on Infections and Veterinary Medicine

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Veterinary Microbiology".

Deadline for manuscript submissions: closed (30 September 2024) | Viewed by 8019

Special Issue Editors


E-Mail Website
Guest Editor
1. Centro de Investigação Vasco da Gama (CIVG), Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Coimbra, Portugal
2. Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
3. Laboratório Associado de Ciência Animal e Veterinária AL4AnimaLS, Lisbon, Portugal
4. Onevetgroup Hospital Veterinário Universitário de Coimbra (HVUC), Coimbra, Portugal
Interests: infection; veterinary

E-Mail Website
Guest Editor
Vasco da Gama Research Centre (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Avenida José R. Sousa Fernandes 197 Lordemão, 3020-210 Coimbra, Portugal
Interests: infection; veterinary

E-Mail Website
Guest Editor
Vasco da Gama Research Centre (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Avenida José R. Sousa Fernandes 197 Lordemão, 3020-210 Coimbra, Portugal
Interests: veterinary; infectious diseases, diagnosis, serology; molecular biology; bacteria; Coxiella burnetii; epidemiology

Special Issue Information

Dear Colleagues,

Infectious agents are of major importance in veterinary medicine. These agents, including bacteria, viruses, parasites and fungi, as well as emerging and re-emerging pathogens, have spread worldwide. Different factors, such as globalization, travel of animals and humans, climate change, antimicrobial resistance, poor biosecurity measures, inadequate surveillance and reporting of infectious diseases, deforestation, habitat loss, urbanization, human–wildlife interactions and lack of vaccination, among others, contribute to the increase and spread of pathogenic agents.

From a One Health perspective, animal infections have a major impact not only on animal (domestic and wildlife) health and welfare, livestock production and other consequent economic issues, but also on environmental and public health. In fact, approximately 60–75% of emerging human infectious diseases are of zoonotic origin. The increase in infectious diseases in veterinary medicine and its consequences are complex and multifactorial, and require a coordinated multidisciplinary approach, including veterinarians, researchers, public health agents, political leaders, and the community.

Prof. Dr. Hugo C. R. Vilhena
Dr. Joana Ferrolho Gibson
Dr. Sofia Ferreira Anastácio
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • animals
  • bacteria
  • fungi
  • infection
  • infectious agents
  • One Health
  • parasites
  • pathogens
  • public health
  • veterinary medicine
  • viruses
  • zoonosis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 2473 KiB  
Article
Antimicrobial-Resistance and Virulence-Associated Genes of Pasteurella multocida and Mannheimia haemolytica Isolated from Polish Dairy Calves with Symptoms of Bovine Respiratory Disease
by Agnieszka Lachowicz-Wolak, Aleksandra Chmielina, Iwona Przychodniak, Magdalena Karwańska, Magdalena Siedlecka, Małgorzata Klimowicz-Bodys, Kamil Dyba and Krzysztof Rypuła
Microorganisms 2025, 13(3), 491; https://doi.org/10.3390/microorganisms13030491 - 22 Feb 2025
Viewed by 696
Abstract
Bovine respiratory disease causes significant economic losses in cattle farming due to mortality, treatment costs, and reduced productivity. It involves viral and bacterial infections, with Pasteurella multocida and Mannheimia haemolytica key bacterial pathogens. These bacteria contribute to severe pneumonia and are often found [...] Read more.
Bovine respiratory disease causes significant economic losses in cattle farming due to mortality, treatment costs, and reduced productivity. It involves viral and bacterial infections, with Pasteurella multocida and Mannheimia haemolytica key bacterial pathogens. These bacteria contribute to severe pneumonia and are often found together. Poland has one of the highest levels of antimicrobial use in food-producing animals among European Union countries. A total of 70 bacterial strains were analyzed, 48 P. multocida and 22 M. haemolytica, collected from affected calves’ respiratory tracts. The bacterial species were confirmed molecularly using PCR, which was also employed to detect antimicrobial resistance and virulence-associated genes. Antimicrobial susceptibility was determined using the broth microdilution method. Antimicrobial resistance varied between the two bacterial species studied. The highest resistance in P. multocida was to chlortetracycline 79.2% (38/48) and oxytetracycline 81.3% (39/48), while M. haemolytica showed 63.6% (14/22) resistance to penicillin and tilmicosin. The highest susceptibility was found for fluoroquinolones: P. multocida demonstrated 91.7% (44/48) susceptibility to enrofloxacin and 87.5% (42/48) to danofloxacin, while 77.3% (17/22) of M. haemolytica were susceptible to both tested fluoroquinolones. The tetH and tetR genes were observed only in P. multocida, at frequencies of 20.8% (10/48) and 16.7% (8/48), respectively. Both species carried the mphE and msrE genes, though at lower frequencies. All M. haemolytica contained the lkt, gs60, and gcp genes. All P. multocida carried the sodA gene, while the hgbB and ompH genes were present in 37.5% (18/48) and 20.8% (10/48) of strains, respectively. The highest resistance was observed against the most commonly used antibiotics in the European Union, although the resistance differed between the studied bacterial species and each strain exhibited the presence of at least one virulence gene. Full article
(This article belongs to the Special Issue Research on Infections and Veterinary Medicine)
Show Figures

Figure 1

12 pages, 658 KiB  
Article
Microbiological Ecological Surveillance of Zoonotic Pathogens from Hamadryas Baboons in Southwestern Saudi Arabia
by Mohammed Abdullah Alqumber
Microorganisms 2024, 12(12), 2421; https://doi.org/10.3390/microorganisms12122421 - 25 Nov 2024
Viewed by 915
Abstract
This study investigates parasitic and bacterial pathogens present in Hamadryas baboons (Papio hamadryas) and humans in southwestern Saudi Arabia. Fecal samples were collected from Hamadryas baboons (n = 999) from three city peripheries and humans from city centers (n [...] Read more.
This study investigates parasitic and bacterial pathogens present in Hamadryas baboons (Papio hamadryas) and humans in southwestern Saudi Arabia. Fecal samples were collected from Hamadryas baboons (n = 999) from three city peripheries and humans from city centers (n = 1998) and peripheries (n = 1998) of southwestern and eastern Saudi cities. Parasitic examinations and bacterial cultures were conducted on these samples. Key findings include the identification of various parasitic and bacterial pathogens, with notable prevalences of Staphylococcus aureus (71.37% in baboons, 71.51% in humans), Blastocystis hominis (42.24% in baboons, 17.85% in humans), Cryptosporidium spp. (40.14% in baboons, 12.6% in humans), hookworms (37.44% in baboons, 18.57% in humans), Strongyloides spp. (37.34% in baboons, 17.39% in humans), Enterobius vermicularis (36.34% in baboons, 11.18% in humans), and Campylobacter spp. (29.73% in baboons, 1.86% in humans). Additionally, the prevalences of these microorganisms in human populations coexisting with baboons in southwestern city peripheries were 75.47%, 25.22%, 23.62%, 26.33%, 22.22%, 15.11%, and 3.8%, respectively. To further characterize bacterial isolates, 16S rRNA gene sequencing was used, suggesting potential zoonotic and anthroponotic cycles. The results highlight significant pathogen prevalence among both baboons and human populations in proximity to baboon habitats, indicating a potential public health risk. However, shared environmental sources, such as contaminated water, were not thoroughly assessed and could play a role in pathogen transmission. The study’s focus on 18 different parasitic and bacterial pathogens allowed for the targeting of prevalent and indicative markers of zoonotic and anthroponotic transmission. In conclusion, these baseline data are crucial for the design of advanced studies to further investigate the zoonotic and anthroponotic transmission dynamics and the environmental factors influencing pathogen prevalence. Full article
(This article belongs to the Special Issue Research on Infections and Veterinary Medicine)
Show Figures

Figure 1

13 pages, 2965 KiB  
Article
Application of MALDI-TOF MS to Identify and Detect Antimicrobial-Resistant Streptococcus uberis Associated with Bovine Mastitis
by Tingrui Zhang, Duangporn Pichpol and Sukolrat Boonyayatra
Microorganisms 2024, 12(7), 1332; https://doi.org/10.3390/microorganisms12071332 - 29 Jun 2024
Viewed by 1495
Abstract
Streptococcus uberis is a common bovine mastitis pathogen in dairy cattle. The rapid identification and characterization of antimicrobial resistance (AMR) in S. uberis plays an important role in its diagnosis, treatment, and prevention. In this study, matrix-assisted laser desorption ionization time-of-flight mass spectrometry [...] Read more.
Streptococcus uberis is a common bovine mastitis pathogen in dairy cattle. The rapid identification and characterization of antimicrobial resistance (AMR) in S. uberis plays an important role in its diagnosis, treatment, and prevention. In this study, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to identify S. uberis and screen for potential AMR biomarkers. Streptococcus uberis strains (n = 220) associated with bovine mastitis in northern Thailand were identified using the conventional microbiological methods and compared with the results obtained from MALDI-TOF MS. Streptococcus uberis isolates were also examined for antimicrobial susceptibility using a microdilution method. Principal component analysis (PCA) and the Mann–Whitney U test were used to analyze the MALDI-TOF mass spectrum of S. uberis and determine the difference between antimicrobial-resistant and -susceptible strains. Using MALDI-TOF MS, 73.18% (161/220) of the sampled isolates were identified as S. uberis, which conformed to the identifications obtained using conventional microbiological methods and PCR. Using PCR, antimicrobial-resistant strains could not be distinguished from antimicrobial-susceptible strains for all three antimicrobial agents, i.e., tetracycline, ceftiofur, and erythromycin. The detection of spectral peaks at 7531.20 m/z and 6804.74 m/z was statistically different between tetracycline- and erythromycin-resistant and susceptible strains, respectively. This study demonstrates a proteomic approach for the diagnosis of bovine mastitis and potentially for the surveillance of AMR among bovine mastitis pathogens. Full article
(This article belongs to the Special Issue Research on Infections and Veterinary Medicine)
Show Figures

Figure 1

12 pages, 5691 KiB  
Article
Critical Involvement of the Thioredoxin Reductase Gene (trxB) in Salmonella Gallinarum-Induced Systemic Infection in Chickens
by Zhihao Zhu, Zuo Hu, Shinjiro Ojima, Xiaoying Yu, Makoto Sugiyama, Hisaya K. Ono and Dong-Liang Hu
Microorganisms 2024, 12(6), 1180; https://doi.org/10.3390/microorganisms12061180 - 11 Jun 2024
Cited by 1 | Viewed by 1211
Abstract
Salmonella enterica serovar Gallinarum biovar Gallinarum (SG) causes fowl typhoid, a notifiable infectious disease in poultry. However, the pathogenic mechanism of SG-induced systemic infection in chickens remains unclear. Thioredoxin reductase (TrxB) is a redox protein crucial for regulating various enzyme activities in Salmonella [...] Read more.
Salmonella enterica serovar Gallinarum biovar Gallinarum (SG) causes fowl typhoid, a notifiable infectious disease in poultry. However, the pathogenic mechanism of SG-induced systemic infection in chickens remains unclear. Thioredoxin reductase (TrxB) is a redox protein crucial for regulating various enzyme activities in Salmonella serovar, but the role in SG-induced chicken systemic infection has yet to be determined. Here, we constructed a mutant SG strain lacking the trxB gene (trxB::Cm) and used chicken embryo inoculation and chicken oral infection to investigate the role of trxB gene in the pathogenicity of SG. Our results showed that trxB::Cm exhibited no apparent differences in colony morphology and growth conditions but exhibited reduced tolerance to H2O2 and increased resistance to bile acids. In the chicken embryo inoculation model, there was no significant difference in the pathogenicity of trxB::Cm and wild-type (WT) strains. In the chicken oral infection, the WT-infected group exhibited typical clinical symptoms of fowl typhoid, with complete mortality between days 6 and 9 post infection. In contrast, the trxB::Cm group showed a 100% survival rate, with no apparent clinical symptoms or pathological changes observed. The viable bacterial counts in the liver and spleen of the trxB::Cm-infected group were significantly reduced, accompanied by decreased expression of cytokines and chemokines (IL-1β, IL-6, IL-12, CXCLi1, TNF-α, and IFN-γ), which were significantly lower than those in the WT group. These results show that the pathogenicity of the trxB-deficient strain was significantly attenuated, indicating that the trxB gene is a crucial virulence factor in SG-induced systemic infection in chickens, suggesting that trxB may become a potentially effective target for controlling and preventing SG infection in chickens. Full article
(This article belongs to the Special Issue Research on Infections and Veterinary Medicine)
Show Figures

Figure 1

Review

Jump to: Research

16 pages, 1107 KiB  
Review
Listeriosis: Characteristics, Occurrence in Domestic Animals, Public Health Significance, Surveillance and Control
by Ana Končurat and Tomislav Sukalić
Microorganisms 2024, 12(10), 2055; https://doi.org/10.3390/microorganisms12102055 - 12 Oct 2024
Cited by 2 | Viewed by 2770
Abstract
Listeriosis is a dangerous zoonosis caused by bacteria of the genus Listeria, with Listeria monocytogenes (LM) being the most pathogenic species. Listeria monocytogenes has been detected in various animal species and in humans, and its ability to evolve from an environmental saprophyte [...] Read more.
Listeriosis is a dangerous zoonosis caused by bacteria of the genus Listeria, with Listeria monocytogenes (LM) being the most pathogenic species. Listeria monocytogenes has been detected in various animal species and in humans, and its ability to evolve from an environmental saprophyte to a powerful intracellular pathogen is driven by the invasion mechanisms and virulence factors that enable cell invasion, replication and cell-to-cell spread. Key regulatory systems, including positive regulatory factor A (PrfA) and the stress-responsive sigma factor σB, control the expression of virulence genes and facilitate invasion of host cells. Listeriosis poses a significant threat to cattle, sheep and goat herds, leading to abortions, septicemia and meningoencephalitis, and ruminants are important reservoirs for Listeria, facilitating transmission to humans. Other Listeria species such as Listeria ivanovii and Listeria innocua can also cause disease in ruminants. Resilience of LM in food processing environments makes it an important foodborne pathogen that is frequently transmitted through contaminated meat and dairy products, with contamination often occurring along the food production chain. In humans, listeriosis primarily affects immunocompromised individuals, pregnant women and the elderly and leads to severe conditions, such as meningitis, septicemia and spontaneous abortion. Possible treatment requires antibiotics that penetrate the blood–brain barrier. Despite the relatively low antimicrobial resistance, multidrug-resistant LM strains have been detected in animals, food and the environment. Controlling and monitoring the disease at the herd level, along with adopting a One Health approach, are crucial to protect human and animal health and to minimize the potential negative impacts on the environment. Full article
(This article belongs to the Special Issue Research on Infections and Veterinary Medicine)
Show Figures

Figure 1

Back to TopTop