- Article
Transit Time Determination Based on Similarity-Symmetry Method in Multipath Ultrasonic Gas Flowmeter
- Hongliang Zhou,
- Yanchu Liu and
- Yunxiao Wu
The cross-correlation algorithm, widely used for transit-time determination in ultrasonic gas flowmeters, becomes susceptible to significant errors under high flow rates. Fluid disturbances and noise distort ultrasonic waveforms, causing cycle-skipping errors that result in large, integer-period miscalculations of time-of-flight. To overcome these limitations, this study introduces a novel similarity-symmetry method. First, a similarity-based technique is proposed that exploits the stable rising-edge profile of the signal envelope, which remains consistent across flow rates, to accurately pinpoint the arrival time and mitigate cycle-skipping. Second, for multi-path flowmeters, the inherent physical symmetry between upstream and downstream transit times in each channel provides a basis for cross-validation. Any significant asymmetry flags potential cycle-skip events for correction. By integrating these two principles, our hybrid method enhances robustness. Experimental results on a six-path gas flowmeter rig demonstrate that the proposed approach reduces average flow rate errors by 75% compared to the standard cross-correlation method and maintains the maximum relative error below 1% when the flow rate is above 71.78 m3/h. This work provides a reliable solution for high-precision gas flow measurement in demanding conditions, with direct relevance to applications such as natural gas custody transfer and industrial process control where measurement accuracy is critical.
18 November 2025




