Trends and Advances in Leaching, Extraction and Flotation for Sustainable Metal Recovery

A special issue of Metals (ISSN 2075-4701).

Deadline for manuscript submissions: 25 June 2025 | Viewed by 2770

Special Issue Editors

Special Issue Information

Dear Colleagues,

This special edition of Metals, "Trends and Advances in Leaching, Extraction and Flotation for Sustainable Metal Recovery", showcases recent advancements in metal recovery via leaching, extraction, and flotation. We cordially invite researchers to submit pioneering studies addressing contemporary challenges in the efficiency, selectivity, and sustainability of these processes. Our areas of interest include the development of novel reagents, enhanced separation methodologies, approaches to retrieving metals from secondary sources, and technological innovations aimed at minimizing environmental impact. Our objective is to provide a medium for disseminating research on the future of metal recovery that emphasizes efficiency and environmental responsibility.

Dr. Jonathan Castillo
Dr. Norman Toro
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • leaching
  • extraction
  • flotation
  • enhanced separation methodologies
  • metal recovery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 2667 KiB  
Article
Sustainable Leaching of Cu, Ni, and Au from Waste Printed Circuit Boards Using Choline Chloride-Based Deep Eutectic Solvents
by Sara Saffaj, Diego Mantovani and Georgios Kolliopoulos
Metals 2025, 15(1), 82; https://doi.org/10.3390/met15010082 - 17 Jan 2025
Viewed by 1267
Abstract
Electronic waste (e-waste) is becoming a serious problem that impacts the environment due to its fast-growing volume. This rise is linked to high electronic and electrical equipment production to meet the increasing demand for high-end electronic devices. Conventional e-waste recycling approaches, including hydrometallurgy [...] Read more.
Electronic waste (e-waste) is becoming a serious problem that impacts the environment due to its fast-growing volume. This rise is linked to high electronic and electrical equipment production to meet the increasing demand for high-end electronic devices. Conventional e-waste recycling approaches, including hydrometallurgy and pyrometallurgy, often involve substantial water and energy consumption and the generation of by-products, such as the emission of toxic gases or hazardous effluents. Within this context, solvometallurgy has emerged as a compelling alternative, whereby green non-toxic non-aqueous solvents, namely deep eutectic solvents (DESs), are used to extract and recover the metals with minimal water and harsh acid/base chemical use. The current study presents the solvo-leaching results of critical and strategic metals, i.e., copper (Cu) and nickel (Ni), and precious metals, i.e., gold (Au), from waste printed circuit boards (PCBs). Five different DESs were tested at mild conditions, namely at a temperature of 65 °C, a stirring speed of 300 rpm, a solid/liquid ratio of 10 g/L, and in the presence of iodine (I2) for 96 h. Among the different solvents tested, the one consisting of choline chloride (ChCl), acetic acid (AA), and I2 emerged as the optimal solvent, leading to the selective extraction of 99% of Cu, 92% of Ni, and 90% of Au from the PCB powder. Full article
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 8081 KiB  
Review
Enrichment Methods for Metal Recovery from Waste from Electrical and Electronic Equipment: A Brief Review
by Ernesto Chicardi, Antonio Lopez-Paneque, Victoria Humildad Gallardo García-Orta, Ranier Enrique Sepúlveda-Ferrer and Jose Maria Gallardo
Metals 2025, 15(2), 140; https://doi.org/10.3390/met15020140 - 29 Jan 2025
Viewed by 1125
Abstract
The growing global demand for minerals and metals, coupled with fluctuations in pricing and market disruptions, has emphasised the critical role of these resources in sustaining the global economy. Waste from Electrical and Electronic Equipment (WEEE) has emerged as a promising source of [...] Read more.
The growing global demand for minerals and metals, coupled with fluctuations in pricing and market disruptions, has emphasised the critical role of these resources in sustaining the global economy. Waste from Electrical and Electronic Equipment (WEEE) has emerged as a promising source of raw materials, particularly for metal recycling and the valorisation of plastic fractions. In 2022, approximately 62 million metric tons of e-waste were generated worldwide, with projections indicating a rise to 74 million metric tons by 2030. Despite the significant volume of WEEE, only 17.4% was collected and recycled, which reveals a considerable opportunity for resource recovery. This review highlights the composition of metals in WEEE, which includes valuable precious metals, such as gold, silver, and palladium, alongside base metals, such as copper and aluminium. The review also discusses current methodologies for metal recovery and focuses on mechanical size-reduction techniques and various physical separation methods, including a shaking table, magnetic, electrostatic, and eddy current separation, flotation, and the use of a hydrocyclone. These technologies play a vital role in enhancing recovery efficiencies, thereby contributing to sustainable practices in the recycling industry. Thus, the works evaluated in this paper reveal the possibility of recovering more than 90 wt.% of precious (Ag, Au, Pd, Pt) and main metals (Cu, Sn, Al, Fe, Ni) by a combination of these mechanical size-reduction and physical separation methods. Full article
Show Figures

Figure 1

Back to TopTop