You are currently viewing a new version of our website. To view the old version click .

High Pressure Synthesis in Materials Science

This special issue belongs to the section “Manufacturing Processes and Systems“.

Special Issue Information

Dear Colleagues,

High pressure (HP) is an integral part of various domains of science. The combination of temperature with pressure results in applications in several already existing fields, such as steam sterilization by autoclave in medicine, single crystal of a-quartz SiO2 by hydrothermal crystal growth in inorganic chemistry, polymerization by reactor in organic chemistry, Pascalization of biologic materials by high hydrostatic vessel in organic chemistry or pharmacy. In inorganic materials chemistry, pressure allows, in addition to temperature, to sinter/consolidate/densify for obtaining solid material in the form generally as ceramic (sintering phenomena) or as monoliths (consolidation phenomena) with dense (by densification) or porous (by interparticle bridging) form. Innovative HP processes were designed for the high pressure syntheses related to: high pressure structural phase (e.g., diamonds instead of graphite) or low temperature structural phase (e.g., for SiO2: quartz instead of the other polymorphs, or amorphous instead of crystallized), consolidation of porous or dense biocomposites, sintering at temperature higher than their thermal decomposition, preservation of hydrates from the raw precursor, initiating a new finer microstructure, higher densification, improvement or driving the chemical reaction, assembling of materials with different thermal stability (e.g., multimaterials). Recently, innovative high pressure processes have emerged by the combination of different technologies opening new possibility for obtaining these advanced functional inorganic materials such as: high pressure & spark plasma sintering, cold isostatic pressure & minus temperature, hydrothermal synthesis & sintering.

The upcoming Special Issue, entitled “High Pressure Synthesis in Materials Science” aims to cover an overview of the innovation in high pressure processes/technologies for the synthesis of advanced functional inorganic materials. To this end, it is my pleasure to invite you to submit a manuscript for this Special Issue. Full papers, communications, and reviews are welcome.

Dr. Alain Largeteau
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sintering
  • densification
  • consolidation
  • crystallization
  • polymorphism
  • innovative high pressure processes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Published Papers

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Materials - ISSN 1996-1944