materials-logo

Journal Browser

Journal Browser

Optical Properties of Crystalline Semiconductors and Nanomaterials

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Optical and Photonic Materials".

Deadline for manuscript submissions: 20 July 2025 | Viewed by 1976

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mathematical and Physical Sciences, Miami University Regionals, Middletown, OH 45042, USA
Interests: shock compression; quantum dots; semiconductors; photoluminescence; carbon dots; nanomaterials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Among the many interesting and technologically attractive materials, semiconductors have always held a special position in research. For the past century, researchers have been working rigorously on many fronts to report the uses and possible application pathways stemming from carriers created by photons. The semiconductor industry is not just a minor subset of the electronics industry, and it continues to grow. Elements and compound semiconductors have not only been researched academically but also commercialized into vast industries. Many band-gap engineering methods have led to novel uses of these materials.

Meanwhile, new classes of materials at lower dimensions are becoming inevitable routes to novel optoelectronic applications. Again, semiconductor nanoparticles such as metal selenides, perovskites, or lead halides have been predominant in this class due to their tuneability and broad range of photoelectric and optoelectronic properties. With quantum sensing applications progressing rapidly, these materials’ uses will continue to grow. Theoretical experiments are being conducted to understand the mechanism of quantum confinement in novel materials, and the field is evolving very fast.

This Special Issue will bring together recently derived state-of-the-art semiconductor bulk and nanoscale properties. Contributions are encouraged from researchers writing papers on the synthesis, processing, band-gap engineering, and photoelectric and optoelectronic properties of crystalline semiconductors, as well as semiconductor nanoparticles. Papers will focus on various light–matter interactions in semiconductor materials, including, but not limited to, theoretical experiments on photoconduction, photoluminescence, catalysis, defects, doping pathways, material growth for quantum technology, and quantum sensing applications. We invite full-length research papers, review articles, and communications with significant novel contributions.

You may choose our Joint Special Issue in Crystals.

Dr. Mithun Bhowmick
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • semiconductors
  • optoelectronics
  • quantum dots
  • nanoparticles
  • nanostructures
  • quantum materials
  • photoluminescence
  • photoelectric

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3266 KiB  
Article
Annealing Effect on Linear and Ultrafast Nonlinear Optical Properties of Bi2Te3 Thin Films
by Tengfei Zhang, Shenjin Wei, Xiaoxiao Song, Shubo Zhang, Yaopeng Li, Yiyun Zou, Ying Wang, Menghan Li, Ying Jiang, Junhua Wang, Ertao Hu and Jing Li
Materials 2024, 17(24), 6281; https://doi.org/10.3390/ma17246281 - 22 Dec 2024
Cited by 1 | Viewed by 787
Abstract
In recent years, the fabrication of materials with large nonlinear optical coefficients and the investigation of methods to enhance nonlinear optical performance have been in the spotlight. Herein, the bismuth telluride (Bi2Te3) thin films were prepared by radio-frequency magnetron [...] Read more.
In recent years, the fabrication of materials with large nonlinear optical coefficients and the investigation of methods to enhance nonlinear optical performance have been in the spotlight. Herein, the bismuth telluride (Bi2Te3) thin films were prepared by radio-frequency magnetron sputtering and annealed in vacuum at various temperatures. The structural and optical properties were characterized and analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/VIS/NIR spectrophotometry. The third-order optical nonlinearities of Bi2Te3 thin films were investigated using the Z-scan technique, employing a 100 fs pulse width at an 800 nm wavelength. It is found that the crystallinity and the average grain size of the films increase with the annealing temperature. Meanwhile, the extinction coefficient of the annealed films increased, accompanied by a redshift in the optical bandgap. All samples exhibit pronounced saturable absorption and self-focusing behaviors. The nonlinear absorption coefficient and nonlinear refractive index of Bi2Te3 films annealed at 300 °C were found to be 2.44 times and 1.85 times higher than those of the as-deposited films, respectively. These findings demonstrate that annealing treatment is an effective approach to tuning the crystalline structure and linear optical properties of Bi2Te3 films while simultaneously enhancing their nonlinear optical performance. Full article
(This article belongs to the Special Issue Optical Properties of Crystalline Semiconductors and Nanomaterials)
Show Figures

Figure 1

11 pages, 2574 KiB  
Article
Photo-Excited Carrier Dynamics in Ammonothermal Mn-Compensated GaN Semiconductor
by Patrik Ščajev, Paweł Prystawko, Robert Kucharski and Irmantas Kašalynas
Materials 2024, 17(23), 5995; https://doi.org/10.3390/ma17235995 - 7 Dec 2024
Viewed by 900
Abstract
We investigated the carrier dynamics of ammonothermal Mn-compensated gallium nitride (GaN:Mn) semiconductors by using sub-bandgap and above-bandgap photo-excitation in a photoluminescence analysis and pump–probe measurements. The contactless probing methods elucidated their versatility for the complex analysis of defects in GaN:Mn crystals. The impurities [...] Read more.
We investigated the carrier dynamics of ammonothermal Mn-compensated gallium nitride (GaN:Mn) semiconductors by using sub-bandgap and above-bandgap photo-excitation in a photoluminescence analysis and pump–probe measurements. The contactless probing methods elucidated their versatility for the complex analysis of defects in GaN:Mn crystals. The impurities of Mn were found to show photoconductivity and absorption bands starting at the 700 nm wavelength threshold and a broad peak located at 800 nm. Here, we determined the impact of Mn-induced states and Mg acceptors on the relaxation rates of charge carriers in GaN:Mn based on a photoluminescence analysis and pump–probe measurements. The electrons in the conduction band tails were found to be responsible for both the photoconductivity and yellow luminescence decays. The slower red luminescence and pump–probe decays were dominated by Mg acceptors. After photo-excitation, the electrons and holes were quickly thermalized to the conduction band tails and Mg acceptors, respectively. The yellow photoluminescence decays exhibited a 1 ns decay time at low laser excitations, whereas, at the highest ones, it increased up to 7 ns due to the saturation of the nonradiative defects, resembling the photoconductivity lifetime dependence. The fast photo-carrier decay time observed in ammonothermal GaN:Mn is of critical importance in high-frequency and high-voltage device applications. Full article
(This article belongs to the Special Issue Optical Properties of Crystalline Semiconductors and Nanomaterials)
Show Figures

Figure 1

Back to TopTop