Marine Compounds and Research of the Middle East

A special issue of Marine Drugs (ISSN 1660-3397).

Deadline for manuscript submissions: closed (31 December 2022) | Viewed by 18204

Special Issue Editor


E-Mail Website1 Website2 Website3
Guest Editor
College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
Interests: marine natural products; isolation; structure elucidation; drug discovery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Middle East (ME) is the intersection region connecting Asia, Africa, and Europe with major bodies of marine waters including the East Mediterranean, Red Sea, Arabian Sea, Persian Gulf, Gulf of Oman, Gulf of Aden. The marine environment, whose biodiversity is in harmony with the geographical location, has been known to represent a sustainable and unique resource for new drugs to combat major diseases. However, the ME's unique environmental and climatic (mostly subtropical and tropical) conditions together with the semi-closed nature of its most marine waters can potentially change the momentum and favored different biosynthetic pathways. This can result in the enhanced release of bioactive and toxic secondary metabolites.

This Special Issue presents studies on natural products isolated from the organisms inhabiting the marine ME’s waters, emphasizing the discovery of new natural molecules and the biological evaluation of the discovered metabolites.

As a Guest Editor for this Special Issue, I take the initiative to invite you to submit your valuable research results on the ME-related marine natural products of new structures and bioactivities. Further, studies linked to drug development, including mechanisms of action, in silico target prediction, biosynthesis, and synthesis based on relevant marine metabolites are also welcomed in this issue. Moreover, research in which authors from the Middle East are working on marine organisms similar to those inhabiting Middle Eastern waters is also covered within this Special Issue.

This Special Issue invites original contributions and reviews.

Prof. Dr. Atallah F. Ahmed
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine natural products
  • secondary metabolites
  • bioactive compounds
  • in silico target prediction
  • drug development
  • ecological impact
  • symbiotic relationship
  • marine invertebrate
  • marine algae
  • marine microorganism

Related Special Issue

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

33 pages, 7121 KiB  
Article
Chemical Compositions and Experimental and Computational Modeling of the Anticancer Effects of Cnidocyte Venoms of Jellyfish Cassiopea andromeda and Catostylus mosaicus on Human Adenocarcinoma A549 Cells
by Afshin Zare, Alireza Afshar, Arezoo Khoradmehr, Neda Baghban, Gholamhossein Mohebbi, Alireza Barmak, Adel Daneshi, Afshar Bargahi, Iraj Nabipour, Sahar Almasi-Turk, Alireza Arandian, Mohammad Ismail Zibaii, Hamid Latifi and Amin Tamadon
Mar. Drugs 2023, 21(3), 168; https://doi.org/10.3390/md21030168 - 07 Mar 2023
Cited by 4 | Viewed by 2330
Abstract
Nowadays, major attention is being paid to curing different types of cancers and is focused on natural resources, including oceans and marine environments. Jellyfish are marine animals with the ability to utilize their venom in order to both feed and defend. Prior studies [...] Read more.
Nowadays, major attention is being paid to curing different types of cancers and is focused on natural resources, including oceans and marine environments. Jellyfish are marine animals with the ability to utilize their venom in order to both feed and defend. Prior studies have displayed the anticancer capabilities of various jellyfish. Hence, we examined the anticancer features of the venom of Cassiopea andromeda and Catostylus mosaicus in an in vitro situation against the human pulmonary adenocarcinoma (A549) cancer cell line. The MTT assay demonstrated that both mentioned venoms have anti-tumoral ability in a dose-dependent manner. Western blot analysis proved that both venoms can increase some pro-apoptotic factors and reduce some anti-apoptotic molecules that lead to the inducing of apoptosis in A549 cells. GC/MS analysis demonstrated some compounds with biological effects, including anti-inflammatory, antioxidant and anti-cancer activities. Molecular docking and molecular dynamic showed the best position of each biologically active component on the different death receptors, which are involved in the process of apoptosis in A549 cells. Ultimately, this study has proven that both venoms of C. andromeda and C. mosaicus have the capability to suppress A549 cells in an in vitro condition and they might be utilized in order to design and develop brand new anticancer agents in the near future. Full article
(This article belongs to the Special Issue Marine Compounds and Research of the Middle East)
Show Figures

Figure 1

20 pages, 3215 KiB  
Article
Green Synthesis of TiO2 Nanoparticles Using Natural Marine Extracts for Antifouling Activity
by Walied M. Alarif, Yasser A. Shaban, Mohammed I. Orif, Mohamed A. Ghandourah, Adnan J. Turki, Hajer S. Alorfi and Hermine R. Z. Tadros
Mar. Drugs 2023, 21(2), 62; https://doi.org/10.3390/md21020062 - 19 Jan 2023
Cited by 10 | Viewed by 2514
Abstract
Titanium dioxide (TiO2) nanoparticles were synthesized via a novel eco-friendly green chemistry approach using marine natural extracts of two red algae (Bostrychia tenella and Laurencia obtusa), a green alga (Halimeda tuna), and a brown alga ( [...] Read more.
Titanium dioxide (TiO2) nanoparticles were synthesized via a novel eco-friendly green chemistry approach using marine natural extracts of two red algae (Bostrychia tenella and Laurencia obtusa), a green alga (Halimeda tuna), and a brown alga (Sargassum filipendula) along with a marine sponge sample identified as Carteriospongia foliascens. X-ray diffraction (XRD), scanning electron microscope (SEM), UV–Vis, X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR) were employed to characterize the crystal structure, surface morphology, and optical properties of the synthesized nanoparticles. Each of the as-synthesized marine extract based TiO2 nanoparticles was individually incorporated as an antifouling agent to form a newly fabricated marine paint formulation. The newly prepared formulations were applied on unprimed steel panels. A comparative study with a commercial antifouling paint (Sipes Transocean Coatings Optima) was carried out. After 108 days of the coated steel panels’ immersion in the Eastern Harbour seawater of Alexandria-Egypt, the prepared paints using B. tenella and C. foliascens extracts demonstrated an excellent antifouling performance toward fouling organisms by inhibiting their settlement and controlling their adhesion onto the immersed panels. In contrast, heavy fouling with barnacles was observed on the surface of the coated panel with the commercial paint. The physicochemical parameters of the seawater surrounding the immersed coated panels were estimated to investigate the influence of the fabricated paint formulations. Interestingly, no effects of the immersed coated panels on the physicochemical characteristics of the surrounding seawater were observed. Based on the obtained results and a comparison with commercially available antifouling products, the marine extract based TiO2 nanoparticle preparations of B. tenella and C. foliascens are promising candidates for eco-friendly antifouling agents. Based on the obtained results and a comparison with commercially available antifouling products, the marine extract based TiO2 nanoparticle preparations of B. tenella and C. foliascens are promising candidates for eco-friendly antifouling agents, which could be attributed to the small crystallite sizes of 22.86 and 8.3 nm, respectively, in addition to the incorporation of carbon in the crystal structure of the nanoparticles. Full article
(This article belongs to the Special Issue Marine Compounds and Research of the Middle East)
Show Figures

Figure 1

18 pages, 6831 KiB  
Article
Network Pharmacological Analysis of the Red Sea Sponge Hyrtios erectus Extract to Reveal Anticancer Efficacy of Corresponding Loaded Niosomes
by Heba A. Abou-Taleb, Ahmed M. Sayed, Hesham Refaat, Faisal Alsenani, Eman Alaaeldin, Fatma A. Mokhtar, Usama Ramadan Abdelmohsen and Nourhan Hisham Shady
Mar. Drugs 2022, 20(10), 628; https://doi.org/10.3390/md20100628 - 01 Oct 2022
Cited by 6 | Viewed by 2181
Abstract
In this study, the LC-HRMS-assisted chemical profiling of Hyrtios erectus sponge led to the annotation of eleven major compounds (111). H. erectus-derived crude extract (HE) was tested in vitro for its antiproliferative activity against three human cancer cell [...] Read more.
In this study, the LC-HRMS-assisted chemical profiling of Hyrtios erectus sponge led to the annotation of eleven major compounds (111). H. erectus-derived crude extract (HE) was tested in vitro for its antiproliferative activity against three human cancer cell lines, Hep-G2 (human liver cancer cell line), MCF-7 (breast cancer cell line), and Caco-2 (colon cancer cell line), before and after encapsulation within niosomes. Hyrtios erectus extract showed moderate in vitro antiproliferative activities towards the studied cell lines with IC50 values 18.5 ± 0.08, 15.2 ± 0.11, and 13.4 ± 0.12, respectively. The formulated extract-containing niosomes (size 142.3 ± 10.3 nm, PDI 0.279, and zeta potential 22.8 ± 1.6) increased the in vitro antiproliferative activity of the entrapped extract significantly (IC50 8.5 ± 0.04, 4.1 ± 0.07, and 3.4 ± 0.05, respectively). A subsequent computational chemical study was performed to build a sponge–metabolite–targets–cancer diseases network, by focusing on targets that possess anticancer activity toward the three cancer types: breast, colon, and liver. Pubchem, BindingDB, and DisGenet databases were used to build the network. Shinygo and KEGG databases in addition to FunRich software were used for gene ontology and functional analysis. The computational analysis linked the metabolites to 200 genes among which 147 genes related to cancer and only 64 genes are intersected in the three cancer types. The study proved that the co-occurrence of compounds 1, 2, 3, 7, 8, and 10 are the most probable compounds possessing cytotoxic activity due to large number of connections to the intersected cytotoxic genes with edges range from 9-14. The targets possess the anticancer effect through Pathways in cancer, Endocrine resistance and Proteoglycans in cancer as mentioned by KEGG and ShinyGo 7.1 databases. This study introduces niosomes as a promising strategy to promote the cytotoxic potential of H. erectus extract. Full article
(This article belongs to the Special Issue Marine Compounds and Research of the Middle East)
Show Figures

Figure 1

9 pages, 1839 KiB  
Article
Spongenolactones A–C, Bioactive 5,5,6,6,5-Pentacyclic Spongian Diterpenes from the Red Sea Sponge Spongia sp.
by Chi-Jen Tai, Atallah F. Ahmed, Chih-Hua Chao, Chia-Hung Yen, Tsong-Long Hwang, Fang-Rong Chang, Yusheng M. Huang and Jyh-Horng Sheu
Mar. Drugs 2022, 20(8), 498; https://doi.org/10.3390/md20080498 - 01 Aug 2022
Cited by 2 | Viewed by 1887
Abstract
Three new 5,5,6,6,5-pentacyclic spongian diterpenes, spongenolactones A–C (13), were isolated from a Red Sea sponge Spongia sp. The structures of the new metabolites were elucidated by extensive spectroscopic analysis and the absolute configurations of 1–3 were determined on [...] Read more.
Three new 5,5,6,6,5-pentacyclic spongian diterpenes, spongenolactones A–C (13), were isolated from a Red Sea sponge Spongia sp. The structures of the new metabolites were elucidated by extensive spectroscopic analysis and the absolute configurations of 1–3 were determined on the basis of comparison of the experimental circular dichroism (CD) and calculated electronic circular dichroism (ECD) spectra. Compounds 13 are the first 5,5,6,6,5-pentacyclic spongian diterpenes bearing an β-hydroxy group at C-1. These metabolites were assayed for their cytotoxic, antibacterial, and anti-inflammatory activities. All three compounds were found to exert inhibitory activity against superoxide anion generation in fMLF/CB-stimulated human neutrophils. Furthermore, 1 showed a higher activity against the growth of Staphylococcus aureus in comparison to 2. Full article
(This article belongs to the Special Issue Marine Compounds and Research of the Middle East)
Show Figures

Figure 1

12 pages, 1364 KiB  
Article
Pro-Apoptotic Activity of the Marine Sponge Dactylospongia elegans Metabolites Pelorol and 5-epi-Ilimaquinone on Human 501Mel Melanoma Cells
by Sara Carpi, Egeria Scoditti, Beatrice Polini, Simone Brogi, Vincenzo Calderone, Peter Proksch, Sherif S. Ebada and Paola Nieri
Mar. Drugs 2022, 20(7), 427; https://doi.org/10.3390/md20070427 - 28 Jun 2022
Cited by 3 | Viewed by 1814
Abstract
The natural environment represents an important source of drugs that originates from the terrestrial and, in minority, marine organisms. Indeed, the marine environment represents a largely untapped source in the process of drug discovery. Among all marine organisms, sponges with algae represent the [...] Read more.
The natural environment represents an important source of drugs that originates from the terrestrial and, in minority, marine organisms. Indeed, the marine environment represents a largely untapped source in the process of drug discovery. Among all marine organisms, sponges with algae represent the richest source of compounds showing anticancer activity. In this study, the two secondary metabolites pelorol (PEL) and 5-epi-ilimaquinone (EPI), purified from Dactylospongia elegans were investigated for their anti-melanoma activity. PEL and EPI induced cell growth repression of 501Mel melanoma cells in a concentration- and time-dependent manner. A cell cycle block in the G1 phase by PEL and EPI was also observed. Furthermore, PEL and EPI induced significant accumulation of DNA histone fragments in the cytoplasmic fraction, indicating a pro-apoptotic effect of both compounds. At the molecular level, PEL and EPI induced apoptosis through the increase in pro-apoptotic BAX expression, confirmed by the decrease in its silencing miR-214-3p and the decrease in the anti-apoptotic BCL-2, MCL1, and BIRC-5 mRNA expression, attested by the increase in their silencing miRNAs, i.e., miR-193a-3p and miR-16-5p. In conclusion, our data indicate that PEL and EPI exert cytotoxicity activity against 501Mel melanoma cells promoting apoptotic signaling and inducing changes in miRNA expression and their downstream effectors. For these reasons could represent promising lead compounds in the anti-melanoma drug research. Full article
(This article belongs to the Special Issue Marine Compounds and Research of the Middle East)
Show Figures

Figure 1

23 pages, 2211 KiB  
Article
Metabolic Profiling and In Vitro Assessment of the Biological Activities of the Ethyl Acetate Extract of Penicillium chrysogenum “Endozoic of Cliona sp. Marine Sponge” from the Red Sea (Egypt)
by Muneera S. M. Al-Saleem, Wafaa H. B. Hassan, Zeinab I. El Sayed, Mahmoud M. Abdel-Aal, Wael M. Abdel-Mageed, Eman Abdelsalam and Sahar Abdelaziz
Mar. Drugs 2022, 20(5), 326; https://doi.org/10.3390/md20050326 - 15 May 2022
Cited by 7 | Viewed by 2893
Abstract
Marine sponge-derived endozoic fungi have been gaining increasing importance as promising sources of numerous and unique bioactive compounds. This study investigates the phytochemical profile and biological activities of the ethyl acetate extract of Penicillium chrysogenum derived from Cliona sp. sponge. Thirty-six compounds were [...] Read more.
Marine sponge-derived endozoic fungi have been gaining increasing importance as promising sources of numerous and unique bioactive compounds. This study investigates the phytochemical profile and biological activities of the ethyl acetate extract of Penicillium chrysogenum derived from Cliona sp. sponge. Thirty-six compounds were tentatively identified from P. chrysogenum ethyl acetate extract along with the kojic acid (KA) isolation. The UPLC-ESI-MS/MS positive ionization mode was used to analyze and identify the extract constituents while 1D and 2D NMR spectroscopy were used for kojic acid (KA) structure confirmation. The antimicrobial, antioxidant, and cytotoxic activities were assessed in vitro. Both the extract and kojic acid showed potent antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa with MIC 250 ± 0.82 µg/mL. Interestingly, the extract showed strong antifungal activity against Candida albicans and Cryptococcus neoformans with MIC 93.75 ± 0.55 and 19.53 ± 0.48 µg/mL, respectively. Furthermore, KA showed the same potency against Fusarium oxysporum and Cryptococcus neoformans with MIC 39.06 ± 0.85 and 39.06 ± 0.98 µg/mL, respectively. Ultimately, KA showed strong antioxidant activity with IC50 33.7 ± 0.8 µg/mL. Moreover, the extract and KA showed strong cytotoxic activity against colon carcinoma (with IC50 22.6 ± 0.8 and 23.4 ± 1.4 µg/mL, respectively) and human larynx carcinoma (with equal IC50 30.8 ± 1.3 and ± 2.1 µg/mL, respectively), respectively. The current study represents the first insights into the phytochemical profile and biological properties of P. chrysoenum ethyl acetate extract, which could be a promising source of valuable secondary metabolites with potent biological potentials. Full article
(This article belongs to the Special Issue Marine Compounds and Research of the Middle East)
Show Figures

Graphical abstract

Review

Jump to: Research

55 pages, 5858 KiB  
Review
Exploring the Mangrove Fruit: From the Phytochemicals to Functional Food Development and the Current Progress in the Middle East
by Fitri Budiyanto, Eman A. Alhomaidi, Afrah E. Mohammed, Mohamed A. Ghandourah, Hajer S. Alorfi, Nahed O. Bawakid and Wailed M. Alarif
Mar. Drugs 2022, 20(5), 303; https://doi.org/10.3390/md20050303 - 28 Apr 2022
Cited by 7 | Viewed by 3343
Abstract
Nowadays, the logarithmic production of existing well-known food materials is unable to keep up with the demand caused by the exponential growth of the human population in terms of the equality of access to food materials. Famous local food materials with treasury properties [...] Read more.
Nowadays, the logarithmic production of existing well-known food materials is unable to keep up with the demand caused by the exponential growth of the human population in terms of the equality of access to food materials. Famous local food materials with treasury properties such as mangrove fruits are an excellent source to be listed as emerging food candidates with ethnomedicinal properties. Thus, this study reviews the nutrition content of several edible mangrove fruits and the innovation to improve the fruit into a highly economic food product. Within the mangrove fruit, the levels of primary metabolites such as carbohydrates, protein, and fat are acceptable for daily intake. The mangrove fruits, seeds, and endophytic fungi are rich in phenolic compounds, limonoids, and their derivatives as the compounds present a multitude of bioactivities such as antimicrobial, anticancer, and antioxidant. In the intermediary process, the flour of mangrove fruit stands as a supplementation for the existing flour with antidiabetic or antioxidant properties. The mangrove fruit is successfully transformed into many processed food products. However, limited fruits from species such as Bruguiera gymnorrhiza, Rhizophora mucronata, Sonneratia caseolaris, and Avicennia marina are commonly upgraded into traditional food, though many more species demonstrate ethnomedicinal properties. In the Middle East, A. marina is the dominant species, and the study of the phytochemicals and fruit development is limited. Therefore, studies on the development of mangrove fruits to functional for other mangrove species are demanding. The locally accepted mangrove fruit is coveted as an alternate food material to support the sustainable development goal of eliminating world hunger in sustainable ways. Full article
(This article belongs to the Special Issue Marine Compounds and Research of the Middle East)
Show Figures

Figure 1

Back to TopTop