Algal Cultivation for Obtaining High-Value Products, 2nd Edition

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine Biotechnology Related to Drug Discovery or Production".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 4085

Special Issue Editors


E-Mail Website
Guest Editor
Institute of BioEconomy, National Research Council, 50019 Sesto Fiorentino, Italy
Interests: carotenoids; polyphenols; antioxidants; microalgae; plants; photosynthesis
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
Interests: microalgae; photosynthesis; photobioreactor; fluorescence; immobilisation; photofermentation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Following the success of the Special Issue entitled ‘Algal Cultivation for Obtaining High-Value Products’, we are delighted to announce the second edition on this publication.

Interest in the employment of high-value products from natural sources for application in human health, the food and cosmetics industries, and animal feed has increased significantly as consumers opt for natural ingredients and show concerns about the toxic effects of synthetic compounds.

Photosynthetic organisms have evolved to different strategies to survive under complex and extreme environmental conditions (high light, high salinity, extreme temperature, nutrient deficiency, or UV- radiation) by adapting their metabolism.

Various species of algae are capable of producing a large amount of secondary metabolites, such as carotenoids, polyphenols, and essential oils, which have a wide range of therapeutic properties due to their antioxidant activity. This peculiarity may depend mainly on the species, strains, genetic diversity, and/or abiotic stress. For this reason, numerous studies have been carried out to increase knowledge in this field and to optimize the recovery of natural antioxidant compounds under different growing conditions and with different stress factors. This Special Issue focuses on promoting algae capable of producing high-value products, as well as cultivation technologies, strategies, and growth conditions that will lead to the popularization of these compounds; techniques for the extraction and purification of these compounds and their potential applications will also be explored.

Dr. Cecilia Faraloni
Dr. Eleftherios Touloupakis
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • algae
  • photosynthesis
  • antioxidant
  • stress
  • carotenoids
  • polyphenols
  • physiology
  • high-value product
  • photobioreactor
  • biotechnology
  • fatty acids

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 823 KiB  
Article
Research on the Influence of Orthogonal Design Optimized Elicitor Combinations on Fucoxanthin Accumulation in Phaeodactylum tricornutum and Its Expression Regulation
by Han Yang, Yifu Gong, Boyue Liu, Yuru Chen, Huan Qin, Heyu Wang and Hao Liu
Mar. Drugs 2025, 23(6), 244; https://doi.org/10.3390/md23060244 - 9 Jun 2025
Viewed by 280
Abstract
Fucoxanthin, a carotenoid with notable pharmaceutical potential, has attracted significant attention due to its efficient accumulation in marine microalgae and the importance of optimizing its induction conditions. In this study, Phaeodactylum tricornutum was employed as a model organism to screen optimal conditions for [...] Read more.
Fucoxanthin, a carotenoid with notable pharmaceutical potential, has attracted significant attention due to its efficient accumulation in marine microalgae and the importance of optimizing its induction conditions. In this study, Phaeodactylum tricornutum was employed as a model organism to screen optimal conditions for fucoxanthin accumulation using a three-factor, four-level orthogonal design. Furthermore, the underlying mechanisms related to photosynthetic physiology and gene regulation were explored. The results revealed that both glycine (Gly) and light intensity significantly enhanced fucoxanthin content (p < 0.05). The optimal condition (Combination C: 0.50 g L−1 Gly, 36 μmol photons·m−2·s−1, 12 h light/12 h dark) yielded a fucoxanthin content of 0.87 μg g−1, representing a 35% increase compared to the control. Meanwhile, Combination p (0.50 g L−1 Gly, 36 μmol photons·m−2·s−1, 24 h light/0 h dark) significantly improved cell density (5.11 × 106 cells mL−1; +18%) and fucoxanthin yield (4.10 μg L−1; +47%). Analysis of photosynthetic parameters demonstrated that the non-photochemical quenching coefficient (NPQ) was suppressed. Gene expression profiling showed that Combination C upregulated photosynthetic genes (psbA, rbcL, rbcS) by up to 2.36-fold, while Combination P notably upregulated fcpb (7.59-fold), crtiso, and pds. Principal component analysis identified that rbcS and pds are key regulatory genes. These findings demonstrate that Gly, light intensity, and photoperiod synergistically regulate the expression of genes involved in photosynthesis and carotenoid biosynthesis, thereby promoting fucoxanthin accumulation. This work provides valuable insights and a theoretical basis for optimizing fucoxanthin production in support of marine drug development. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products, 2nd Edition)
Show Figures

Figure 1

13 pages, 1074 KiB  
Article
Stage-Specific Effects of TiO2, ZnO, and CuO Nanoparticles on Green Microalga Haematococcus lacustris: Biomass and Astaxanthin Biosynthesis
by Ludmila Rudi, Tatiana Chiriac, Liliana Cepoi, Svetlana Djur and Ana Valuta
Mar. Drugs 2025, 23(5), 204; https://doi.org/10.3390/md23050204 - 11 May 2025
Viewed by 453
Abstract
Evaluating the effects of nanoparticles on biomass growth and astaxanthin accumulation in Haematococcus lacustris is crucial for optimizing the production of astaxanthin, a valuable carotenoid with numerous industrial applications. Identifying the life stages at which these nanoparticles exert stimulatory or toxic effects will [...] Read more.
Evaluating the effects of nanoparticles on biomass growth and astaxanthin accumulation in Haematococcus lacustris is crucial for optimizing the production of astaxanthin, a valuable carotenoid with numerous industrial applications. Identifying the life stages at which these nanoparticles exert stimulatory or toxic effects will aid in formulating effective production strategies. This study investigated the effects of titanium dioxide (TiO2), zinc oxide (ZnO), and copper oxide (CuO) nanoparticles on biomass growth, astaxanthin biosynthesis, and lipid accumulation in Haematococcus lacustris, with a focus on their stage-specific impact throughout the algal life cycle. The nanoparticles were added at the start of cultivation, and the microalgal cultures developed continuously in their presence. Sampling for biochemical analyses was performed at distinct life stages (green motile, palmella, and aplanospore), enabling the assessment of stage-dependent responses. TiO2NPs significantly stimulated biomass accumulation during the green motile stage. In the palmella stage, astaxanthin levels decreased in the presence of all nanoparticles, likely due to the absence of a stress signal required to activate pigment biosynthesis, despite ongoing biomass growth. In contrast, the aplanospore stage exhibited reactivation of astaxanthin biosynthesis and increased lipid accumulation, particularly under TiO2NPs. Astaxanthin content increased by 21.57%. This study highlights that TiO2, ZnO, and CuO nanoparticles modulate growth and astaxanthin biosynthesis in Haematococcus lacustris in a life cycle-dependent manner. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 1384 KiB  
Article
Exploring Phaeodactylum tricornutum for Nutraceuticals: Cultivation Techniques and Neurotoxin Risk Assessment
by Tobias Ebbing, Lena Kopp, Konstantin Frick, Tabea Simon, Berit Würtz, Jens Pfannstiel, Ulrike Schmid-Staiger, Stephan C. Bischoff and Günter E. M. Tovar
Mar. Drugs 2025, 23(2), 58; https://doi.org/10.3390/md23020058 - 26 Jan 2025
Cited by 1 | Viewed by 1900
Abstract
This study investigates the potential of the diatom Phaeodactylum tricornutum (PT) as a sustainable and nutritionally valuable food source, focusing on its ability to produce bioactive compounds such as eicosapentaenoic acid, fucoxanthin, chrysolaminarin (CRY) and proteins. PT was cultivated in a flat-plate airlift [...] Read more.
This study investigates the potential of the diatom Phaeodactylum tricornutum (PT) as a sustainable and nutritionally valuable food source, focusing on its ability to produce bioactive compounds such as eicosapentaenoic acid, fucoxanthin, chrysolaminarin (CRY) and proteins. PT was cultivated in a flat-plate airlift photobioreactor (FPA-PBR) illuminated with LEDs from two sides. The study aimed to monitor and minimize β-methylamino-L-alanine (BMAA) levels to address safety concerns. The data showed that the selected FPA-PBR setup was superior in biomass and EPA productivity, and CRY production was reduced. No BMAA was detected in any biomass sample during cultivation. By adjusting the cultivation conditions, PT biomass with different compositional profiles could be produced, enabling various applications in the food and health industries. Biomass from nutrient-repleted conditions is rich in EPA and Fx, with nutritional and health benefits. Biomass from nutrient-depleted conditions accumulated CRY, which can be used as dietary fiber. These results highlight the potential of PT as a versatile ingredient for human consumption and the effectiveness of FPA-PBRs with artificial lighting in producing high-quality biomass. This study also provides the basis for future research to optimize photobioreactor conditions to increase production efficiency and to tailor the biomass profiles of PT for targeted health-promoting applications. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products, 2nd Edition)
Show Figures

Figure 1

Review

Jump to: Research

13 pages, 2258 KiB  
Review
Enhancing CO2 Fixation in Microalgal Systems: Mechanistic Insights and Bioreactor Strategies
by Zhongliang Sun, Chenmei Bo, Shuonan Cao and Liqin Sun
Mar. Drugs 2025, 23(3), 113; https://doi.org/10.3390/md23030113 - 7 Mar 2025
Cited by 1 | Viewed by 1097
Abstract
Microalgae are small, single-celled, or simple multicellular organisms that contain Chlorophyll a, allowing them to efficiently convert CO2 and water into organic matter through photosynthesis. They are valuable in producing a range of products such as biofuels, food, pharmaceuticals, and cosmetics, making [...] Read more.
Microalgae are small, single-celled, or simple multicellular organisms that contain Chlorophyll a, allowing them to efficiently convert CO2 and water into organic matter through photosynthesis. They are valuable in producing a range of products such as biofuels, food, pharmaceuticals, and cosmetics, making them economically and environmentally significant. Currently, CO2 is delivered to microalgae cultivation systems mainly through aeration with CO2-enriched gases. However, this method demonstrates limited CO2 absorption efficiency (13–20%), which reduces carbon utilization effectiveness and significantly increases carbon-source expenditure. To overcome these challenges, innovative CO2 supplementation technologies have been introduced, raising CO2 utilization rates to over 50%, accelerating microalgae growth, and reducing cultivation costs. This review first categorizes CO2 supplementation technologies used in photobioreactor systems, focusing on different mechanisms for enhancing CO2 mass transfer. It then evaluates the effectiveness of these technologies and explores their potential for scaling up. Among these strategies, membrane-based CO2 delivery systems and the incorporation of CO2 absorption enhancers have shown the highest efficiency in boosting CO2 mass transfer and microalgae productivity. Future efforts should focus on integrating these methods into large-scale photobioreactor systems to optimize cost-effective, sustainable production. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products, 2nd Edition)
Show Figures

Figure 1

Back to TopTop