Special Issue "Clinical and Research of Genetic Cardiomyopathies"

A special issue of Journal of Clinical Medicine (ISSN 2077-0383). This special issue belongs to the section "Cardiology".

Deadline for manuscript submissions: 30 April 2021.

Special Issue Editor

Dr. Martina Calore
E-Mail Website
Guest Editor
Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
Interests: genetic cardiomyopathies; heart failure; microRNAs; iPS-CMs; animal models; genetics

Special Issue Information

Dear Colleagues,

Inherited cardiomyopathies are a clinically heterogeneous group comprising cardiac structural and functional changes in the heart caused by DNA mutations. The phenotypic spectrum of genetic cardiomyopathies is broad, in terms of penetrance, expressivity, and symptoms, which can be either confined to the heart or part of generalized systemic diseases. Often, these disorders result in heart failure, and the prognosis of affected patients remains poor despite recent advances in the management of these diseases. Therefore, there is room for improvement of the clinical outcomes by identification of new novel molecular defects and pathways, screening and molecular diagnosis, as well as novel therapeutic and preventive strategies.

In order to have a more complete comprehension of the pathophysiology of inherited cardiomyopathies, this Special Issue on “Clinical and Research of Genetic Cardiomyopathies” is focused on both clinical science as well as basic and translational research on this field. In particular, original and up-to-date review articles are solicited regarding (epi)genetic aspects, disease models, and molecular mechanisms of genetic cardiomyopathies. Moreover, newer diagnostic tools and therapeutic approaches are also of interest.

Overall, the main goal of this Special Issue is a comprehensive overview of the state-of-the-art on this important matter.

Dr. Martina Calore
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Clinical Medicine is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Genetic cardiomyopathies
  • Genetic
  • Epigenetic
  • Disease models
  • Disease mechanisms
  • Novel therapies
  • Diagnostic strategy

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Psychosocial Stress Hastens Disease Progression and Sudden Death in Mice with Arrhythmogenic Cardiomyopathy
J. Clin. Med. 2020, 9(12), 3804; https://doi.org/10.3390/jcm9123804 - 24 Nov 2020
Viewed by 1063
Abstract
Physiological stressors, such as exercise, can precipitate sudden cardiac death or heart failure progression in patients with arrhythmogenic cardiomyopathy (ACM). Yet, whether and to what extent a highly prevalent and more elusive environmental factor, such as psychosocial stress (PSS), can also increase ACM [...] Read more.
Physiological stressors, such as exercise, can precipitate sudden cardiac death or heart failure progression in patients with arrhythmogenic cardiomyopathy (ACM). Yet, whether and to what extent a highly prevalent and more elusive environmental factor, such as psychosocial stress (PSS), can also increase ACM disease progression is unexplored. Here, we first quantified perceived stress levels in patients with ACM and found these levels correlated with the extent of arrhythmias and cardiac dysfunction. To determine whether the observed correlation is due to causation, we inflicted PSS-via the resident-intruder (RI) paradigm—upon Desmoglein-2 mutant mice, a vigorously used mammalian model of ACM. We found that ACM mice succumbed to abnormally high in-trial, PSS mortality. Conversely, no sudden deaths occurred in wildtype (WT) counterparts. Desmoglein-2 mice that survived RI challenge manifested markedly worse cardiac dysfunction and remodeling, namely apoptosis and fibrosis. Furthermore, WT and ACM mice displayed similar behavior at baseline, but Desmoglein-2 mice exhibited heightened anxiety following RI-induced PSS. This outcome correlated with the worsening of cardiac phenotypes. Our mouse model demonstrates that in ACM-like subjects, PSS is incisive enough to deteriorate cardiac structure and function per se, i.e., in the absence of any pre-existing anxious behavior. Hence, PSS may represent a previously underappreciated risk factor in ACM disease penetrance. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Show Figures

Figure 1

Open AccessArticle
Familial Arrhythmogenic Cardiomyopathy: Clinical Determinants of Phenotype Discordance and the Impact of Endurance Sports
J. Clin. Med. 2020, 9(11), 3781; https://doi.org/10.3390/jcm9113781 - 23 Nov 2020
Viewed by 461
Abstract
Arrhythmogenic cardiomyopathy (ACM) is primarily a familial disease with autosomal dominant inheritance. Incomplete penetrance and variable expression are common, resulting in diverse clinical manifestations. Although recent studies on genotype–phenotype relationships have improved our understanding of the molecular mechanisms leading to the expression of [...] Read more.
Arrhythmogenic cardiomyopathy (ACM) is primarily a familial disease with autosomal dominant inheritance. Incomplete penetrance and variable expression are common, resulting in diverse clinical manifestations. Although recent studies on genotype–phenotype relationships have improved our understanding of the molecular mechanisms leading to the expression of the full-blown disease, the underlying genetic substrate and the clinical course of asymptomatic or oligo-symptomatic mutation carriers are still poorly understood. We aimed to analyze different phenotypic expression profiles of ACM in the context of the same familial genetic mutation by studying nine adult cases from four different families with four different familial variants (two plakophilin-2 and two desmoglein-2) from the Swiss Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) Registry. The affected individuals with the same genetic variants presented with highly variable phenotypes ranging from no disease or a classical, right-sided disease, to ACM with biventricular presentation. Moreover, some patients developed early-onset, electrically unstable disease whereas others with the same genetic variants presented with late-onset electrically stable disease. Despite differences in age, gender, underlying genotype, and other clinical characteristics, physical exercise has been observed as the common denominator in provoking an arrhythmic phenotype in these families. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Show Figures

Figure 1

Open AccessArticle
Association between Left Atrial Deformation and Brain Involvement in Patients with Anderson-Fabry Disease at Diagnosis
J. Clin. Med. 2020, 9(9), 2741; https://doi.org/10.3390/jcm9092741 - 25 Aug 2020
Cited by 1 | Viewed by 450
Abstract
Background: Anderson-Fabry disease (AFD) can induce both central nervous system white matter lesions (WMLs) and cardiac abnormalities including left atrial (LA) dysfunction. We sought to evaluate the possible interrelations of LA structure and function impairment with the presence of WMLs in AFD patients. [...] Read more.
Background: Anderson-Fabry disease (AFD) can induce both central nervous system white matter lesions (WMLs) and cardiac abnormalities including left atrial (LA) dysfunction. We sought to evaluate the possible interrelations of LA structure and function impairment with the presence of WMLs in AFD patients. Methods 22 AFD patients and 22 controls, matched for age and sex, underwent an echo-Doppler exam including quantification of peak atrial longitudinal strain (PALS). AFD patients underwent also a 3-T brain magnetic resonance imaging with a visual quantification of WMLs by Fazekas’ score (FS) on 3D FLAIR images. Results AFD patients had significantly higher left ventricular (LV) mass index (LVMi) and relative wall thickness, and lower PALS compared to controls. Among AFD patients, 9 showed a FS = 0, and 13 a FS > 1. AFD patients with FS ≥ 1 showed lower PALS (29.4 ± 6.7 vs. 37.2 ± 3.9%, p = 0.003) than those with FS = 0, without difference in LA volume index and LVMi. In AFD patients, FS was inversely related to PALS (r = −0.49, p < 0.0001), even after adjusting for LVMi (r = −0.43, p < 0.05). Conclusions In the absence of significant alterations in LA size, AFD patients had lower PALS compared to controls. The inverse association between PALS and presence of WMLs indicates a possible parallel early involvement of heart and brain. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Show Figures

Figure 1

Open AccessArticle
Danon Disease-Associated LAMP-2 Deficiency Drives Metabolic Signature Indicative of Mitochondrial Aging and Fibrosis in Cardiac Tissue and hiPSC-Derived Cardiomyocytes
J. Clin. Med. 2020, 9(8), 2457; https://doi.org/10.3390/jcm9082457 - 31 Jul 2020
Viewed by 895
Abstract
Danon disease is a severe X-linked disorder caused by deficiency of the lysosome-associated membrane protein-2 (LAMP-2). Clinical manifestations are phenotypically diverse and consist of hypertrophic and dilated cardiomyopathies, skeletal myopathy, retinopathy, and intellectual dysfunction. Here, we investigated the metabolic landscape of Danon disease [...] Read more.
Danon disease is a severe X-linked disorder caused by deficiency of the lysosome-associated membrane protein-2 (LAMP-2). Clinical manifestations are phenotypically diverse and consist of hypertrophic and dilated cardiomyopathies, skeletal myopathy, retinopathy, and intellectual dysfunction. Here, we investigated the metabolic landscape of Danon disease by applying a multi-omics approach and combined structural and functional readouts provided by Raman and atomic force microscopy. Using these tools, Danon patient-derived cardiac tissue, primary fibroblasts, and human induced pluripotent stem cells differentiated into cardiomyocytes (hiPSC-CMs) were analyzed. Metabolic profiling indicated LAMP-2 deficiency promoted a switch toward glycolysis accompanied by rerouting of tryptophan metabolism. Cardiomyocytes’ energetic balance and NAD+/NADH ratio appeared to be maintained despite mitochondrial aging. In turn, metabolic adaption was accompanied by a senescence-associated signature. Similarly, Danon fibroblasts appeared more stress prone and less biomechanically compliant. Overall, shaping of both morphology and metabolism contributed to the loss of cardiac biomechanical competence that characterizes the clinical progression of Danon disease. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Show Figures

Figure 1

Open AccessArticle
Mitochondrial DNA: Hotspot for Potential Gene Modifiers Regulating Hypertrophic Cardiomyopathy
J. Clin. Med. 2020, 9(8), 2349; https://doi.org/10.3390/jcm9082349 - 23 Jul 2020
Cited by 3 | Viewed by 1029
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and untreatable cardiovascular disease with a highly complex clinical and genetic causation. HCM patients bearing similar sarcomeric mutations display variable clinical outcomes, implying the involvement of gene modifiers that regulate disease progression. As individuals exhibiting mutations in [...] Read more.
Hypertrophic cardiomyopathy (HCM) is a prevalent and untreatable cardiovascular disease with a highly complex clinical and genetic causation. HCM patients bearing similar sarcomeric mutations display variable clinical outcomes, implying the involvement of gene modifiers that regulate disease progression. As individuals exhibiting mutations in mitochondrial DNA (mtDNA) present cardiac phenotypes, the mitochondrial genome is a promising candidate to harbor gene modifiers of HCM. Herein, we sequenced the mtDNA of isogenic pluripotent stem cell-cardiomyocyte models of HCM focusing on two sarcomeric mutations. This approach was extended to unrelated patient families totaling 52 cell lines. By correlating cellular and clinical phenotypes with mtDNA sequencing, potentially HCM-protective or -aggravator mtDNA variants were identified. These novel mutations were mostly located in the non-coding control region of the mtDNA and did not overlap with those of other mitochondrial diseases. Analysis of unrelated patients highlighted family-specific mtDNA variants, while others were common in particular population haplogroups. Further validation of mtDNA variants as gene modifiers is warranted but limited by the technically challenging methods of editing the mitochondrial genome. Future molecular characterization of these mtDNA variants in the context of HCM may identify novel treatments and facilitate genetic screening in cardiomyopathy patients towards more efficient treatment options. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Show Figures

Graphical abstract

Open AccessArticle
Hereditary ATTR Amyloidosis in Austria: Prevalence and Epidemiological Hot Spots
J. Clin. Med. 2020, 9(7), 2234; https://doi.org/10.3390/jcm9072234 - 14 Jul 2020
Cited by 1 | Viewed by 638
Abstract
Background: Hereditary transthyretin amyloidosis (hATTR) is an autosomal dominantly inherited disorder caused by an accumulation of amyloid fibrils in tissues due to mutations in the transthyretin (TTR) gene. The prevalence of hATTR is still unclear and likely underestimated in many countries. [...] Read more.
Background: Hereditary transthyretin amyloidosis (hATTR) is an autosomal dominantly inherited disorder caused by an accumulation of amyloid fibrils in tissues due to mutations in the transthyretin (TTR) gene. The prevalence of hATTR is still unclear and likely underestimated in many countries. In order to apply new therapies in a targeted manner, early diagnosis and knowledge of phenotype-genotype correlations are mandatory. This study aimed to assess the prevalence and phenotypic spectrum of hATTR in Austria. Methods: Within the period of 2014–2019, patients with ATTR-associated cardiomyopathy and/or unexplained progressive polyneuropathies were screened for mutations in the TTR gene. Results: We identified 43 cases from 22 families carrying 10 different TTR missense mutations and confirmed two mutational hot spots at c.323A>G (p.His108Arg) and c.337G>C (p.Val113Leu). Two further patients with late onset ATTR carried TTR variants of unknown significance. The majority of patients initially presented with heart failure symptoms that were subsequently accompanied by progressive polyneuropathy in most cases. A total of 55% had a history of carpal tunnel syndrome before the onset of other organ manifestations. Conclusions: Our study underlined the relevance of hATTR in the pathogenesis of amyloid-driven cardiomyopathy and axonal polyneuropathy and indicated considerable genetic heterogeneity of this disease in the Austrian population. The estimated prevalence of hATTR in Austria based on this study is 1:200,000 but a potentially higher number of unknown cases must be taken into account. With respect to new therapeutic approaches, we strongly propose genetic testing of the TTR gene in an extended cohort of patients with unexplained heart failure and progressive polyneuropathy. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Show Figures

Figure 1

Open AccessArticle
New Insights on Genetic Diagnostics in Cardiomyopathy and Arrhythmia Patients Gained by Stepwise Exome Data Analysis
J. Clin. Med. 2020, 9(7), 2168; https://doi.org/10.3390/jcm9072168 - 09 Jul 2020
Cited by 1 | Viewed by 672
Abstract
Inherited cardiomyopathies are characterized by clinical and genetic heterogeneity that challenge genetic diagnostics. In this study, we examined the diagnostic benefit of exome data compared to targeted gene panel analyses, and we propose new candidate genes. We performed exome sequencing in a cohort [...] Read more.
Inherited cardiomyopathies are characterized by clinical and genetic heterogeneity that challenge genetic diagnostics. In this study, we examined the diagnostic benefit of exome data compared to targeted gene panel analyses, and we propose new candidate genes. We performed exome sequencing in a cohort of 61 consecutive patients with a diagnosis of cardiomyopathy or primary arrhythmia, and we analyzed the data following a stepwise approach. Overall, in 64% of patients, a variant of interest (VOI) was detected. The detection rate in the main sub-cohort consisting of patients with dilated cardiomyopathy (DCM) was much higher than previously reported (25/36; 69%). The majority of VOIs were found in disease-specific panels, while a further analysis of an extended panel and exome data led to an additional diagnostic yield of 13% and 5%, respectively. Exome data analysis also detected variants in candidate genes whose functional profile suggested a probable pathogenetic role, the strongest candidate being a truncating variant in STK38. In conclusion, although the diagnostic yield of gene panels is acceptable for routine diagnostics, the genetic heterogeneity of cardiomyopathies and the presence of still-unknown causes favor exome sequencing, which enables the detection of interesting phenotype–genotype correlations, as well as the identification of novel candidate genes. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Show Figures

Graphical abstract

Open AccessArticle
Mitochondrial Energetics and Ca2+-Activated ATPase in Obstructive Hypertrophic Cardiomyopathy
J. Clin. Med. 2020, 9(6), 1799; https://doi.org/10.3390/jcm9061799 - 09 Jun 2020
Cited by 1 | Viewed by 640
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common genetic disease of the myocardium associated to mutations in sarcomeric genes, but the link between genotype and phenotype remains poorly understood. Magnetic resonance spectroscopy studies have demonstrated impaired cardiac energetics in patients with HCM, and altered [...] Read more.
Hypertrophic cardiomyopathy (HCM) is the most common genetic disease of the myocardium associated to mutations in sarcomeric genes, but the link between genotype and phenotype remains poorly understood. Magnetic resonance spectroscopy studies have demonstrated impaired cardiac energetics in patients with HCM, and altered mitochondria were described in biopsies, but little is known about possible perturbations of mitochondrial function and adenosine triphosphate (ATP) production/consumption. The aim of this study was to investigate possible abnormalities in mitochondrial enzymes generating/scavenging reactive oxygen species, and changes in the Ca2+-activated ATPases in myocardial tissue from patients with obstructive HCM undergoing surgical myectomy compared to unused donor hearts (CTRL). Methods and Results: Both the amount and activity of mitochondrial Complex I (nicotinamide adenine dinucleotide -reduced form, NADH, dehydrogenase) were upregulated in HCM vs. CTRL, whilst the activity of Complex V (ATP synthase) was not reduced and ATP levels were significantly higher in HCM vs. CTRL. Antioxidant Mn-activated superoxide dismutase (SOD2) and (m)-aconitase activities were increased in HCM vs. CTRL. The Cu/Zn-activated superoxide dismutase (SOD1) amount and mtDNA copy number were unaltered in HCM. Total Ca2+-activated ATPase activity and absolute amount were not different HCM vs. CTRL, but the ratio between ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting type 2 (ATP2A2) and type 1 (ATP2A1), ATP2A2/ATP2A1, was increased in HCM in favor of the slow isoform (ATP2A2). Conclusion: HCM is characterized by mitochondrial Complex I hyperactivity and preserved Ca2+-activated ATPase activity with a partial switch towards slow ATP2A2. This data may give insight into the abnormal cellular energetics observed in HCM cardiomyopathy but other studies would need to be performed to confirm the observations described here. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Show Figures

Graphical abstract

Open AccessArticle
Genotype-Related Clinical Characteristics and Myocardial Fibrosis and Their Association with Prognosis in Hypertrophic Cardiomyopathy
J. Clin. Med. 2020, 9(6), 1671; https://doi.org/10.3390/jcm9061671 - 01 Jun 2020
Cited by 3 | Viewed by 648
Abstract
Background: The spectrum of genetic variants and their clinical significance of Hypertrophic cardiomyopathy (HCM) have been poorly studied in Asian patients. The objectives of this study were to assess the spectrum of genetic variants and genotype–phenotype relationships within a Korean HCM population. Methods: [...] Read more.
Background: The spectrum of genetic variants and their clinical significance of Hypertrophic cardiomyopathy (HCM) have been poorly studied in Asian patients. The objectives of this study were to assess the spectrum of genetic variants and genotype–phenotype relationships within a Korean HCM population. Methods: Eighty-nine consecutive unrelated HCM patients were included. All patients underwent genotypic analysis for 23 HCM-associated genes. Clinical parameters including echocardiographic and cardiac magnetic resonance (CMR) parameters were evaluated. A composite of major adverse cardiac and cerebrovascular events was assessed. Results: Genetic variants were detected in 55 of 89 subjects. Pathogenic variants or likely pathogenic variants were identified in 27 of HCM patients in MYBPC3, TNNI3, MYH7, and MYL7. Variants of uncertain significance were identified in 28 patients. There were significant differences in the presence of non-sustained ventricular tachycardia (p = 0.030) and myocardial fibrosis on CMR (p = 0.029) in the detected compared to the not-detected groups. Event-free survival was superior in the not-detected group (p = 0.006). Conclusion: Genetic variants in patients with HCM are relatively common and are associated with adverse clinical events and myocardial fibrosis on CMR. Genotypic analysis may add important information to clinical variables in the assessment of long-term risk for HCM patients. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Show Figures

Graphical abstract

Open AccessArticle
Significance of NT-proBNP and High-Sensitivity Troponin in Friedreich Ataxia
J. Clin. Med. 2020, 9(6), 1630; https://doi.org/10.3390/jcm9061630 - 28 May 2020
Cited by 1 | Viewed by 585
Abstract
Background: Friedreich’s ataxia (FA) is a rare autosomal recessive mitochondrial disease resulting of a triplet repeat expansion guanine-adenine-adenine (GAA) in the frataxin (FXN) gene, exhibiting progressive cerebellar ataxia, diabetes and cardiomyopathy. We aimed to determine the relationship between cardiac biomarkers, serum N-terminal pro-brain [...] Read more.
Background: Friedreich’s ataxia (FA) is a rare autosomal recessive mitochondrial disease resulting of a triplet repeat expansion guanine-adenine-adenine (GAA) in the frataxin (FXN) gene, exhibiting progressive cerebellar ataxia, diabetes and cardiomyopathy. We aimed to determine the relationship between cardiac biomarkers, serum N-terminal pro-brain natriuretic peptide (NT-proBNP), and serum cardiac high-sensitivity troponin (hsTnT) concentrations, and the extent of genetic abnormality and cardiac parameters. Methods: Between 2013 and 2015, 85 consecutive genetically confirmed FA adult patients were prospectively evaluated by measuring plasma hsTnT and NT-proBNP concentrations, electrocardiogram, and echocardiography. Results: The 85 FA patients (49% women) with a mean age of 39 ± 12 years, a mean disease onset of 17 ± 11 years had a mean SARA (Scale for the Assessment and Rating of Ataxia) score of 26 ± 10. The median hsTnT concentration was 10 ng/L (3 to 85 ng/L) and 34% had a significant elevated hsTnT ≥ 14 ng/L. Increased septal wall thickness was associated with increased hsTnT plasma levels (p < 0.001). The median NT-proBNP concentration was 31 ng/L (5 to 775 ng/L) and 14% had significant elevated NT-proBNP ≥ 125 ng/L. Markers of increased left ventricular filling pressure (trans mitral E/A and lateral E/E’ ratio) were associated with increased NT-proBNP plasma levels (p = 0.01 and p = 0.01). Length of GAA or the SARA score were not associated with hsTnT or NT-proBNP plasma levels. Conclusion: hsTnT was increased in 1/3 of the adult FA and associated with increased septal wall thickness. Increased NT-proBNP remained a marker of increased left ventricular filling pressure. This could be used to identify patients that should undergo a closer cardiac surveillance. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Left Ventricular Noncompaction—A Systematic Review of Risk Factors in the Pediatric Population
J. Clin. Med. 2021, 10(6), 1232; https://doi.org/10.3390/jcm10061232 - 16 Mar 2021
Viewed by 272
Abstract
Left ventricular noncompaction (LVNC) is a heterogeneous, often hereditary group of diseases, which may have diverse clinical manifestations. This article reviews the risk factors for unfavorable outcomes of LVNC in children, as well as discuss the diagnostic methods and the differences between pediatric [...] Read more.
Left ventricular noncompaction (LVNC) is a heterogeneous, often hereditary group of diseases, which may have diverse clinical manifestations. This article reviews the risk factors for unfavorable outcomes of LVNC in children, as well as discuss the diagnostic methods and the differences between pediatric and adult LVNC. Through a systematic review of the literature, a total of 1983 articles were outlined; 23 of them met the inclusion criteria. In echocardiography the following have been associated with adverse outcomes in children: Left ventricular ejection fraction, end-diastolic dimension, left ventricular posterior wall compaction, and decreased strains. T-wave abnormalities and increased spatial peak QRS-T angle in ECG, as well as arrhythmia, were observed in children at greater risk. Cardiac magnetic resonance is a valuable tool to identify those with systolic dysfunction and late gadolinium enhancement. Genetic testing appears to help identify children at risk, because mutations in particular genes have been associated with worse outcomes. ECG and imaging tests, such as echocardiography and magnetic resonance, help outline risk factors for unfavorable outcomes of LVNC in children and in identifying outpatients who require more attention. Refining the current diagnostic criteria is crucial to avoid inadequate restrain from physical activity. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Show Figures

Figure 1

Open AccessReview
Genetic Cardiomyopathies: The Lesson Learned from hiPSCs
J. Clin. Med. 2021, 10(5), 1149; https://doi.org/10.3390/jcm10051149 - 09 Mar 2021
Viewed by 449
Abstract
Genetic cardiomyopathies represent a wide spectrum of inherited diseases and constitute an important cause of morbidity and mortality among young people, which can manifest with heart failure, arrhythmias, and/or sudden cardiac death. Multiple underlying genetic variants and molecular pathways have been discovered in [...] Read more.
Genetic cardiomyopathies represent a wide spectrum of inherited diseases and constitute an important cause of morbidity and mortality among young people, which can manifest with heart failure, arrhythmias, and/or sudden cardiac death. Multiple underlying genetic variants and molecular pathways have been discovered in recent years; however, assessing the pathogenicity of new variants often needs in-depth characterization in order to ascertain a causal role in the disease. The application of human induced pluripotent stem cells has greatly helped to advance our knowledge in this field and enabled to obtain numerous in vitro patient-specific cellular models useful to study the underlying molecular mechanisms and test new therapeutic strategies. A milestone in the research of genetically determined heart disease was the introduction of genomic technologies that provided unparalleled opportunities to explore the genetic architecture of cardiomyopathies, thanks to the generation of isogenic pairs. The aim of this review is to provide an overview of the main research that helped elucidate the pathophysiology of the most common genetic cardiomyopathies: hypertrophic, dilated, arrhythmogenic, and left ventricular noncompaction cardiomyopathies. A special focus is provided on the application of gene-editing techniques in understanding key disease characteristics and on the therapeutic approaches that have been tested. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Show Figures

Figure 1

Open AccessReview
Diagnosis and Risk Prediction of Dilated Cardiomyopathy in the Era of Big Data and Genomics
J. Clin. Med. 2021, 10(5), 921; https://doi.org/10.3390/jcm10050921 - 26 Feb 2021
Viewed by 571
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure and life-threatening ventricular arrhythmias (LTVA). Work-up and risk stratification of DCM is clinically challenging, as there is great heterogeneity in phenotype and genotype. Throughout the last decade, improved genetic testing of patients has [...] Read more.
Dilated cardiomyopathy (DCM) is a leading cause of heart failure and life-threatening ventricular arrhythmias (LTVA). Work-up and risk stratification of DCM is clinically challenging, as there is great heterogeneity in phenotype and genotype. Throughout the last decade, improved genetic testing of patients has identified genotype–phenotype associations and enhanced evaluation of at-risk relatives leading to better patient prognosis. The field is now ripe to explore opportunities to improve personalised risk assessments. Multivariable risk models presented as “risk calculators” can incorporate a multitude of clinical variables and predict outcome (such as heart failure hospitalisations or LTVA). In addition, genetic risk scores derived from genome/exome-wide association studies can estimate an individual’s lifetime genetic risk of developing DCM. The use of clinically granular investigations, such as late gadolinium enhancement on cardiac magnetic resonance imaging, is warranted in order to increase predictive performance. To this end, constructing big data infrastructures improves accessibility of data by using electronic health records, existing research databases, and disease registries. By applying methods such as machine and deep learning, we can model complex interactions, identify new phenotype clusters, and perform prognostic modelling. This review aims to provide an overview of the evolution of DCM definitions as well as its clinical work-up and considerations in the era of genomics. In addition, we present exciting examples in the field of big data infrastructures, personalised prognostic assessment, and artificial intelligence. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Show Figures

Figure 1

Open AccessReview
The Multifaced Perspectives of Genetic Testing in Pediatric Cardiomyopathies and Channelopathies
J. Clin. Med. 2020, 9(7), 2111; https://doi.org/10.3390/jcm9072111 - 04 Jul 2020
Viewed by 633
Abstract
Pediatric inherited cardiomyopathies (CMPs) and channelopathies (CNPs) remain important causes of death in this population, therefore, there is a need for prompt diagnosis and tailored treatment. Conventional evaluation fails to establish the diagnosis of pediatric CMPs and CNPs in a significant proportion, prompting [...] Read more.
Pediatric inherited cardiomyopathies (CMPs) and channelopathies (CNPs) remain important causes of death in this population, therefore, there is a need for prompt diagnosis and tailored treatment. Conventional evaluation fails to establish the diagnosis of pediatric CMPs and CNPs in a significant proportion, prompting further, more complex testing to make a diagnosis that could influence the implementation of lifesaving strategies. Genetic testing in CMPs and CNPs may help unveil the underlying cause, but needs to be carried out with caution given the lack of uniform recommendations in guidelines about the precise time to start the genetic evaluation or the type of targeted testing or whole-genome sequencing. A very diverse etiology and the scarce number of randomized studies of pediatric CMPs and CNPs make genetic testing of these maladies far more particular than their adult counterpart. The genetic diagnosis is even more puzzling if the psychological impact point of view is taken into account. This review aims to put together different perspectives, state-of-the art recommendations—synthetizing the major indications from European and American guidelines—and psychosocial outlooks to construct a comprehensive genetic assessment of pediatric CMPs and CNPs. Full article
(This article belongs to the Special Issue Clinical and Research of Genetic Cardiomyopathies)
Back to TopTop