Journal of
Clinical Medicine

Supplementary Data

Mitochondrial DNA: hotspot for potential gene modifiers regulating hypertrophic cardiomyopathy

Parisa K. Kargaran ${ }^{1}$, Jared M. Evans ${ }^{2}$, Sara E. Bodbin ${ }^{3}$, James G. W. Smith ${ }^{4}$, Timothy J. Nelson ${ }^{5}$, Chris Denning3,* and Diogo Mosqueira ${ }^{3, *}$
${ }^{1}$ Department of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.
${ }^{2}$ Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
${ }^{3}$ Division of Cancer \& Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, Nottingham, UK.
${ }^{4}$ Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, UK.
${ }^{5}$ Division of General Internal Medicine, Division of Pediatric Cardiology, Departments of Medicine, Molecular Pharmacology, and Experimental Therapeutics, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, USA
* Correspondence: chris.denning@nottingham.ac.uk (CD); diogo.mosqueira@nottingham.ac.uk (DM)

Supplementary material contents:

8 Tables

Supplementary Table S1- mtDNA variants identified by NGS in Family A composed by healthy and HCM individuals bearing the p.E99K-ACTC1 mutation.
Patients displaying more severe phenotypes/ clinical features are labelled in red; healthy or less severe patients are highlighted in green

Fibroblast sample	Loci	mtDNA Mutation	\% Heteroplasmy	Polyphen prediction (score)
E99K1	$\begin{gathered} \text { MT-HV2, MT- } \\ \text { OHR } \\ \hline \end{gathered}$	m.152T>C	99.8\%	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \text { (non-coding) } \end{gathered}$
6;7	$\begin{gathered} \text { MT-HV2, MT- } \\ \text { OHR } \\ \hline \end{gathered}$	m.185G>A	98.1\%; 98.8\%	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \text { (non-coding) } \end{gathered}$
E99K1; 6; 7	$\begin{gathered} \text { MT-HV2, MT- } \\ \text { OHR, MT- } \\ \text { CSB2 } \end{gathered}$	m.309_310insCT	31.7\%; 32.3\%; 35.8\%	N / A (non-coding)
$\begin{gathered} \text { E99K1; E99K2; NC; } \\ 6 ; 7 \end{gathered}$	$\begin{gathered} \text { MT-HV2, MT- } \\ \text { OHR, MT- } \\ \text { CSB2 } \end{gathered}$	m.310T>C	$\begin{gathered} 53.9 \% ; 13.5 \% ; \\ 17.2 \% ; 57.0 \% ; 58.8 \% \end{gathered}$	$\begin{gathered} \text { N/A } \\ \text { (non-coding) } \end{gathered}$
$\begin{gathered} \text { E99K1; E99K2; NC; } \\ 6 ; 7 \end{gathered}$	$\begin{gathered} \text { MT-HV2, MT- } \\ \text { OHR, MT- } \\ \text { CSB2 } \end{gathered}$	m.310_311insC	$\begin{gathered} 33.3 \% ; 65.8 \% ; \\ 62.5 \% ; 32.5 \% ; 31.7 \% \end{gathered}$	$\begin{gathered} \text { N/A } \\ \text { (non-coding) } \end{gathered}$
6	$\begin{gathered} \text { MT-OHR, MT- } \\ \text { LSP } \\ \hline \end{gathered}$	m.414T>G	18.7\%	$\begin{gathered} \text { N/A } \\ \text { (non-coding) } \end{gathered}$
6;7	MT-ND2	m. $4659 \mathrm{G}>\mathrm{A}$	99.7\%; 99.3\%	Benign (0.029)
$\begin{gathered} \text { E99K1; E99K2; NC; } \\ 6 ; 7 \end{gathered}$	MT-TA	m.5597A>C	$\begin{gathered} 7.5 \% ; 7.9 \% ; 5.1 \% ; \\ 12.2 \% ; 12.4 \% \\ \hline \end{gathered}$	$\begin{gathered} \text { N/A } \\ \text { (non-coding) } \end{gathered}$
E99K1	MT-CO1	m.7109C>T	91.4\%	N/A (redundant)
E99K2; NC	MT-ATP6	m.8952T>C	99.9\%; 99.8\%	N / A (redundant)
6;7	MT-ATP6	m.9025G>A	99.6\%; 99.6\%	Probably damaging (1.000)
E99K1	MT-ATP6	$\mathrm{m} .9116 \mathrm{~T}>\mathrm{C}$	99.7\%	$\begin{aligned} & \text { Benign } \\ & (0.000) \\ & \hline \end{aligned}$
E99K1	MT-ND4	m.11176G>A	99.6\%	N/A (redundant)
6;7	MT-ND4	m.11215C>T	99.7\%; 99.6\%	N / A (redundant)
E99K2; NC	MT-ND5	m.12715A>G	99.8\%; 99.8\%	Probably damaging (0.991)
6;7	MT-ND5	m.12810A>G	99.9\%; 99.9\%	Probably damaging (STOP)
6;7	MT-CYB	m.15586T>C	99.8\%; 99.9\%	N / A (redundant)
E99K1	MT-HV1, MT- TAS	m.16168C>T	44.2\%	N/A (non-coding)
6; 7	MT-HV1	m.16209T>C	99.9\%; 99.9\%	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \text { (non-coding) } \end{gathered}$

Supplementary Table S2-mtDNA variants identified by NGS in Family B composed by healthy and HCM individuals bearing the p.E99K-ACTC1 mutation.
Patients displaying more severe phenotypes/ clinical features are labelled in red; healthy or less severe patients are highlighted in green.

Fibroblast sample	Loci	mtDNA Mutation	\% heteroplasmy	Polyphen score
4;5	$\begin{aligned} & \text { MT-HV2, } \\ & \text { MT-OHR } \end{aligned}$	m.152T>C	99.8\%; 99.8\%	N / A (non-coding)
$\begin{gathered} 4 ; 5 ; 13 ; 14 ; 15 ; \\ 16 ; 17 ; 18 \end{gathered}$	MT-HV2, MT-OHR, MT-CSB2	m.310T>C	$\begin{gathered} \hline 10.5 \% ; 14.3 \% ; 13.2 \% ; \\ 15.0 \% ; 13.5 \% ; 18.4 \% ; \\ 15.2 \% ; 12.9 \% \\ \hline \end{gathered}$	$\begin{gathered} \text { N/A } \\ \text { (non-coding) } \end{gathered}$
$\begin{gathered} 4 ; 5 ; 13 ; 14 ; 15 ; \\ 16 ; 17 ; 18 \end{gathered}$	MT-HV2, MT-OHR, MT-CSB2	m.310_311insC	$\begin{gathered} \hline 67.6 \% ; 67.2 \% ; 67.3 \% ; \\ 65.7 \% ; 68.6 \% ; 57.7 \% \text {; } \\ \text { 65.0\%; } 67.8 \% \\ \hline \end{gathered}$	$\begin{gathered} \text { N/A } \\ \text { (non-coding) } \end{gathered}$
13	MT-HV3	m.513G>A	13.0\%	N / A (non-coding)
14; 15; 16; 17; 18	MT-HV3	m.514_515delCA	$\begin{gathered} 56.3 \% ; 59.4 \% ; 55.6 \% ; \\ 55.0 \% ; 55.4 \% \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \text { (non-coding) } \end{gathered}$
13	MT-HV3	m.513_514insCACA	32.5\%	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \text { (non-coding) } \end{gathered}$
18	MT-HV3, MT-TFH	m.540A>C	11.0\%	N/A (non-coding)
14; 15; 16; 17; 18	MT-HV3, MT-HSP1	m. $567 \mathrm{~A}>\mathrm{G}$	$\begin{gathered} \hline 99.3 \% ; 99.2 \% ; 99.2 \% ; \\ 99.5 \% ; 99.5 \% \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \text { (non-coding) } \end{gathered}$
15	MT-HV3	m. $574 \mathrm{~A}>\mathrm{G}$	12.3\%	$\begin{gathered} \text { N/A } \\ \text { (non-coding) } \end{gathered}$
$\begin{gathered} 4 ; 5 ; 13 ; 14 ; 15 ; \\ 16 \end{gathered}$	MT-TA	m. $5597 \mathrm{~A}>\mathrm{C}$	$\begin{aligned} & \hline 25.7 \% ; 10.5 \% ; 14.0 \% \text {; } \\ & 23.8 \% ; 13.8 \% ; 16.8 \% \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \text { (non-coding) } \end{gathered}$
4	MT-ATP8	m. $8490 \mathrm{~T}>\mathrm{A}$	10.0\%	Possibly damaging (0.711)
4; 5; 14	MT-CO3	m.9716T>C	100\%; 99.9\%; 2.4\%	N/A (redundant)
4; 5; 14	MT-ND4	m.11914G>A	99.8\%; 99.4\%; 1.9\%	N/A (redundant)
14; 15; 16; 17; 18	MT-ND4	m.11950A>G	$\begin{gathered} \hline 97.9 \% ; 99.8 \% ; 99.8 \% ; \\ 99.8 \% ; 99.9 \% \\ \hline \end{gathered}$	N / A (redundant)
4	MT-CYB	m.15639T>C	18.4\%	Probably damaging (0.998)
4; 5; 14	MT-CYB	m.15670T>C	99.8\%; 99.9\%; 2.1\%	$\begin{gathered} \hline \mathrm{N} / \mathrm{A} \\ \text { (redundant) } \end{gathered}$
4	MT-HV1	m.16390G>A	12.7\%	$\begin{gathered} \text { N/A } \\ \text { (non-coding) } \end{gathered}$

Supplementary Table S3-mtDNA variants identified by NGS in Family C composed by healthy and HCM individuals bearing the p.E99K-ACTC1 mutation.
Patients displaying more severe phenotypes/ clinical features are labelled in red; healthy or less severe patients are highlighted in green.

Fibroblast sample	Loci	mtDNA Position	\% heteroplasmy	Polyphen prediction (score)
$8 ; 9 ; 10$	MT-HV2, MT- OHR, MT-CSB2	m.310T>C	$16.0 \% ; 11.0 \% ;$ 14.0%	N/A (non-coding)
$8 ; 9 ; 10$	MT-HV2, MT- OHR, MT-CSB2	m.310_311insC	$67.1 \% ; 69.6 \% ;$ 70.1%	N/A (non-coding)
$8 ; 9 ; 10$	MT-HV3	m.513G>A	$11.9 \% ; 14.8 \% ; 9.9 \%$	N/A (non-coding)
$8 ; 9 ; 10$	MT-HV3	m.513_514insCACA	$31.9 \% ; 33.3 \% ;$ 34.9%	N/A (non-coding)
$8 ; 10$	MT-TA	m.5597A>C	$11.2 \% ; 10.7 \%$	N/A (non-coding)

Supplementary Table S4-Analysis of m.152T>C mtDNA variant frequency in haplogroups (number between brackets) using full length sequence set (left) or control region sequence set (right) deposited in MITOMAP database.

Using Full Length sequence set			
Top Level HG	Top Level HG Branch (ltr-num)	HG Branch (ltr- num-ltr)	

Using Control Region sequence set			
Lineage	Top Level HG	Top Level HG Branch (ltr-num)	HG Branch (ltr-num-ltr)
$\begin{aligned} & \text { L } 4405 \\ & (52.5 \%) \end{aligned}$	L0	L0	L0f 50 (71.4\%)
			L0k 70 (69.3\%)
	$\begin{aligned} & \text { L1 1057 } \\ & \text { (88.3\%) } \end{aligned}$	$\begin{aligned} & \text { L1 1057 } \\ & (88.3 \%) \end{aligned}$	$\begin{aligned} & \text { L1b } 523 \\ & (87.5 \%) \end{aligned}$
			L1c 534 (89.4\%)
	$\begin{aligned} & \text { L2 } 1763 \\ & (82.0 \%) \end{aligned}$	$\begin{aligned} & \text { L2 } 1755 \\ & (81.6 \%) \end{aligned}$	$\begin{gathered} \text { L2a } 1265 \\ (83.8 \%) \end{gathered}$
			$\begin{aligned} & \text { L2b } 225 \\ & (89.3 \%) \end{aligned}$
			L2c 234 (84.2\%)
			L2e 28 (68.3\%)
	L3	L3	L3a 21 (56.8\%)
			$\begin{aligned} & \text { L3d } 388 \\ & (72.7 \%) \end{aligned}$
			L3k 16 (66.7\%)
$\begin{aligned} & \text { M } 2598 \\ & (11.1 \%) \end{aligned}$	C	C4	C4 54 (100.0\%)
			C4e 12 (66.7\%)
	D	D4	$\begin{aligned} & \text { D4a } 306 \\ & (57.3 \%) \end{aligned}$
		D5	D5 16 (76.2\%)
			D5c 24 (85.7\%)
		D6	$\begin{gathered} \hline \text { D6c } 44 \\ (100.0 \%) \\ \hline \end{gathered}$
	M	M3	M3c 43 (67.2\%)
		M4	M4b 9 (50.0\%)

	D5	D5c 18 (100.0\%)
	D6	D6c 12 (100.0\%)
	M2	M2b 98 (96.1\%)

		M13	$\begin{gathered} \text { M13 } 59 \\ (100.0 \%) \\ \hline \end{gathered}$
		M13	$\begin{gathered} \hline \text { M13c } 19 \\ (76.0 \%) \\ \hline \end{gathered}$
		$\begin{aligned} & \text { M23 23 } \\ & \text { (74.2\%) } \end{aligned}$	M23 23 (74.2\%)
		M24	$\begin{gathered} \text { M24a } 13 \\ (86.7 \%) \\ \hline \end{gathered}$
		M30	$\begin{aligned} & \text { M30b } 14 \\ & (100.0 \%) \\ & \hline \end{aligned}$
		$\begin{aligned} & \text { M36 } 19 \\ & (63.3 \%) \end{aligned}$	$\begin{aligned} & \hline \text { M36a } 13 \\ & (100.0 \%) \end{aligned}$
		$\begin{aligned} & \text { M37 18 } \\ & \text { (56.2\%) } \end{aligned}$	M37 17 (89.5\%)
		$\begin{aligned} & \text { M57 } 14 \\ & (93.3 \%) \end{aligned}$	
		M74	M74 7 (50.0\%)
		$\begin{aligned} & \text { M75 } 16 \\ & (61.5 \%) \end{aligned}$	M75 16 (61.5\%)
			Z3 17 (100.0\%)
	$\text { Z } 311$		Z3a 34 (89.5\%)
			Z4 27 (100.0\%)
			Z4a 47 (54.0\%)
		A2	A2v 12 (80.0\%)
		A5	A5c 10 (58.8\%)
		A6 23 (92.0\%)	A6b 16 (88.9\%)
		A7 14 (63.6\%)	A7 14 (63.6\%)
N 5863	A	A11	$\begin{aligned} & \text { A11b } 14 \\ & (100.0 \%) \\ & \hline \end{aligned}$
(14.1\%)	A	$\begin{aligned} & \text { A14 112 } \\ & (100.0 \%) \end{aligned}$	$\begin{aligned} & \text { A14 } 112 \\ & (100.0 \%) \\ & \hline \end{aligned}$
		A15 152	$\begin{gathered} \hline \text { A15 141 } \\ (98.6 \%) \\ \hline \end{gathered}$
		(93.3\%)	$\begin{gathered} \hline \text { A15b } 11 \\ (55.0 \%) \\ \hline \end{gathered}$
		A16 8 (61.5\%)	A16 8 (61.5\%)
		$\begin{gathered} \text { A24 10 } \\ (100.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} \text { A24 10 } \\ (100.0 \%) \\ \hline \end{gathered}$

			Z3b 8 (80.0\%)
		$\begin{gathered} \hline \text { Z4 26 } \\ (100.0 \%) \\ \hline \end{gathered}$	Z4a 17 (100.0\%)
$\begin{aligned} & \text { N } 7119 \\ & (21.4 \%) \end{aligned}$	A	A	A 57 (86.4\%)
		$\begin{gathered} \text { A1 } 13 \\ (100.0 \%) \\ \hline \end{gathered}$	A1a 12 (100.0\%)
		A2	A2v 10 (90.9\%)
		$\begin{gathered} \text { A6 16 } \\ (100.0 \%) \end{gathered}$	
		A8	A8a 10 (62.5\%)
		$\begin{aligned} & \text { A11 34 } \\ & (97.1 \%) \end{aligned}$	A11a 22 (95.7\%)
			$\begin{aligned} & \hline \text { A11b } 10 \\ & (100.0 \%) \\ & \hline \end{aligned}$
		$\begin{gathered} \text { A12 12 } \\ (100.0 \%) \end{gathered}$	$\begin{aligned} & \hline \text { A12a } 10 \\ & (100.0 \%) \end{aligned}$
		$\begin{gathered} \hline \text { A13 19 } \\ (100.0 \%) \\ \hline \end{gathered}$	A13 19 (100.0\%)
		$\begin{array}{r} \text { A14 34 } \\ (94.4 \%) \\ \hline \end{array}$	A14 34 (94.4\%)
		$\begin{aligned} & \text { A15 } 67 \\ & \text { (97.1\%) } \end{aligned}$	$\begin{aligned} & \hline \text { A15a 10 } \\ & (100.0 \%) \\ & \hline \end{aligned}$
			A15c 53 (98.1\%)
		$\begin{aligned} & \hline \text { A17 } 40 \\ & (95.2 \%) \\ & \hline \end{aligned}$	A17 40 (95.2\%)
	B	B2	B2q 15 (71.4\%)
	F	F1	F1b 93 (66.9\%)
			F1c 46 (97.9\%)
		$\begin{aligned} & \hline \text { F3 162 } \\ & (54.9 \%) \\ & \hline \end{aligned}$	F3b 155 (68.6\%)
		F4	F4a 18 (56.2\%)
	H	H1	H1i 17 (89.5\%)
		H2	H2b 28 (96.6\%)
		H3	H3g 58 (96.7\%)
			H3k 17 (100.0\%)
			H3q 6 (54.5\%)
		H8	H8c 22 (95.7\%)

	A25 7 (70.0\%)	A25 7 (70.0\%)
B	B2	B2b 83 (85.6\%)
		B2u 6 (60.0\%)
F	F2	F2i 14 (58.3\%)
H	$\begin{gathered} \text { H9 22 } \\ (100.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { H9a } 22 \\ (100.0 \%) \\ \hline \end{gathered}$
	$\begin{gathered} \hline \text { H32 62 } \\ (100.0 \%) \end{gathered}$	$\begin{gathered} \hline \text { H32 62 } \\ (100.0 \%) \end{gathered}$
	$\begin{aligned} & \text { H36 } 12 \\ & (70.6 \%) \end{aligned}$	H36 12 (70.6\%)
HV	HV1	$\begin{gathered} \text { HV1b } 23 \\ (50.0 \%) \end{gathered}$
	$\begin{aligned} & \hline \text { HV2 } 58 \\ & (65.9 \%) \\ & \hline \end{aligned}$	$\begin{gathered} \text { HV2a } 38 \\ (84.4 \%) \end{gathered}$
I	I2 27 (71.1\%)	I2 24 (80.0\%)
	I3 11 (68.8\%)	I3a 11 (68.8\%)
J	J1	J1d 84 (52.2\%)
	J2 219 (58.1\%)	J2b 126 (84.0\%)
K	K1	$\begin{aligned} & \text { K1c } 145 \\ & (91.2 \%) \\ & \hline \end{aligned}$
	K2	K2a 50 (69.4\%)
N	N1	$\begin{aligned} & \hline \text { N1b } 123 \\ & (52.1 \%) \\ & \hline \end{aligned}$
R	R2 63 (61.8\%)	R2 52 (61.9\%)
		R2b 10 (76.9\%)
	R7 15 (51.7\%)	R7 9 (81.8\%)
S	S	S 22 (100.0\%)
T	T2	T2d 20 (69.0\%)
U	U2	U2c 45 (68.2\%)
		$\begin{aligned} & \text { U2e } 170 \\ & (63.7 \%) \end{aligned}$
	$\begin{aligned} & \text { U7 } 269 \\ & (59.1 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { U7a } 208 \\ & (79.1 \%) \\ & \hline \end{aligned}$
	U8	U8c 8 (61.5\%)
X	X4 8 (72.7\%)	X4 8 (72.7\%)

Supplementary Table S5-Analysis of m.309_310insCT mtDNA variant frequency in haplogroups (number between brackets) using full length sequence set (left) or control region sequence set (right) deposited in MITOMAP database.

Using Full Length sequence set			
Lineage	Top Level HG	Top Level HG Branch (ltr-num)	HG Branch (ltr-num-ltr)
$\begin{gathered} \hline \text { L } 1001 \\ (16.2 \%) \end{gathered}$	$\begin{gathered} \hline \text { L6 } 7 \\ (58.3 \%) \\ \hline \end{gathered}$	L6 7 (58.3\%)	
$\begin{aligned} & \text { M } 3220 \\ & (30.1 \%) \end{aligned}$	C	C	C 243 (54.0\%)
		$\begin{aligned} & \text { C1 161 } \\ & (51.6 \%) \end{aligned}$	$\begin{aligned} & \text { C1b 65 } \\ & \text { (51.6\%) } \end{aligned}$
			C1c 32 (54.2\%)
			$\begin{aligned} & \text { C1d } 61 \\ & (50.8 \%) \end{aligned}$
	D	D1	D1j 12 (57.1\%)
		D2 50 (58.1\%)	$\begin{aligned} & \text { D2a } 41 \\ & (65.1 \%) \end{aligned}$
			D2b 9 (60.0\%)
		D4	D4s 9 (69.2\%)
	M	M1	$\begin{aligned} & \text { M1b } 15 \\ & \text { (50.0\%) } \end{aligned}$
		M5	$\begin{aligned} & \text { M5b } 16 \\ & (57.1 \%) \end{aligned}$
		$\begin{aligned} & \text { M11 19 } \\ & \text { (50.0\%) } \end{aligned}$	$\begin{aligned} & \text { M11b } 7 \\ & (70.0 \%) \end{aligned}$
		M13	$\begin{aligned} & \text { M13c } 8 \\ & (61.5 \%) \end{aligned}$
		M21	$\begin{gathered} \hline \text { M21a } 18 \\ (54.5 \%) \\ \hline \end{gathered}$
		M33	$\begin{array}{r} \text { M33a } 27 \\ (67.5 \%) \\ \hline \end{array}$
		M34 6 (60.0\%)	
		M35	M35b 41 (71.9\%)
		$\begin{aligned} & \text { M36 30 } \\ & \text { (78.9\%) } \end{aligned}$	$\begin{gathered} \hline \text { M36d } 23 \\ (82.1 \%) \\ \hline \end{gathered}$

Using Control Region sequence set			
Lineage	Top Level HG	Top Level HG Branch (ltr-num)	HG Branch (ltr-num-ltr)
$\begin{gathered} \hline \text { L } 1640 \\ (19.5 \%) \end{gathered}$	L4	L4	L4 6 (50.0\%)
$\begin{aligned} & \text { M } 4047 \\ & (17.3 \%) \end{aligned}$	C	C4	C4e 9 (50.0\%)
	D	$\begin{aligned} & \text { D2 129 } \\ & (64.2 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { D2c } 127 \\ & (72.2 \%) \\ & \hline \end{aligned}$
		D4	D4 22 (59.5\%)
		D5	$\begin{gathered} \text { D5c } 16 \\ (57.1 \%) \end{gathered}$
		D6	$\begin{aligned} & \hline \text { D6c } 25 \\ & (56.8 \%) \\ & \hline \end{aligned}$
	M	M5	$\begin{aligned} & \text { M5c } 14 \\ & (51.9 \%) \\ & \hline \end{aligned}$
		M10	M10 8 (72.7\%)
		M11	$\begin{aligned} & \text { M11 17 } \\ & \text { (70.8\%) } \end{aligned}$
		M13	$\begin{aligned} & \text { M13 } 46 \\ & (78.0 \%) \\ & \hline \end{aligned}$
			$\begin{gathered} \text { M13c } 20 \\ (80.0 \%) \end{gathered}$
		$\begin{gathered} \text { M38 } 6 \\ (50.0 \%) \\ \hline \end{gathered}$	
		M65	$\begin{aligned} & \text { M65b } 7 \\ & (58.3 \%) \end{aligned}$
		M74	M74 8 (57.1\%)
		M91	$\begin{aligned} & \text { M91a } 7 \\ & (50.0 \%) \end{aligned}$
	Q	Q1	$\begin{aligned} & \text { Q1a } 37 \\ & (50.0 \%) \end{aligned}$
	Z	$\begin{gathered} \text { Z3 } 34 \\ (54.8 \%) \\ \hline \end{gathered}$	$\begin{array}{r} \text { Z3a } 23 \\ (60.5 \%) \\ \hline \end{array}$
		Z4	Z4 17 (63.0\%)

		$\begin{aligned} & \text { M38 } 13 \\ & (56.5 \%) \\ & \hline \end{aligned}$	
		M52	$\begin{aligned} & \hline \text { M52b } 8 \\ & (57.1 \%) \end{aligned}$
		$\begin{aligned} & \hline \text { M57 10 } \\ & \text { (71.4\%) } \\ & \hline \end{aligned}$	
		M62	$\begin{gathered} \text { M62b } 10 \\ (55.6 \%) \end{gathered}$
		M73	M73 6 (54.5\%)
$\begin{aligned} & \text { N } 9019 \\ & (27.1 \%) \end{aligned}$	A	A2	$\begin{gathered} \hline \text { A2a } 118 \\ (52.2 \%) \end{gathered}$
			$\begin{aligned} & \text { A2b } 22 \\ & (51.2 \%) \\ & \hline \end{aligned}$
			A2p 7 (50.0\%)
			$\begin{aligned} & \text { A2w } 11 \\ & (50.0 \%) \\ & \hline \end{aligned}$
			$\begin{aligned} & \text { A2y } 12 \\ & (80.0 \%) \end{aligned}$
		A5 63 (60.0\%)	$\begin{aligned} & \text { A5a } 53 \\ & (80.3 \%) \\ & \hline \end{aligned}$
		$\begin{aligned} & \hline \text { A13 11 } \\ & (57.9 \%) \end{aligned}$	$\begin{aligned} & \text { A13 11 } \\ & \text { (57.9\%) } \end{aligned}$
	B	B2	B2d 7 (58.3\%)
			B21 7 (50.0\%)
	H	H1	$\begin{aligned} & \text { H1h } 11 \\ & (55.0 \%) \end{aligned}$
			H1r 6 (60.0\%)
			H1v 8 (50.0\%)
		H7	$\begin{aligned} & \mathrm{H} 7 \mathrm{a} 29 \\ & (52.7 \%) \end{aligned}$
			$\begin{aligned} & \text { H7e } 16 \\ & (66.7 \%) \\ & \hline \end{aligned}$
		H10	$\begin{gathered} \hline \text { H10e } 39 \\ (61.9 \%) \\ \hline \end{gathered}$
		H31	$\begin{gathered} \text { H31a } 10 \\ (76.9 \%) \end{gathered}$
		$\begin{array}{r} \text { H35 } 14 \\ (60.9 \%) \\ \hline \end{array}$	$\begin{aligned} & \text { H35 } 11 \\ & (55.0 \%) \\ & \hline \end{aligned}$
		H40 7 (53.8\%)	
		H49	$\begin{gathered} \text { H49a } 12 \\ (57.1 \%) \end{gathered}$
		H51 6 (54.5\%)	
		H52 8 (61.5\%)	H52 8 (61.5\%)

$\begin{aligned} & \text { N } 6358 \\ & (15.3 \%) \end{aligned}$	A	A2	$\begin{aligned} & \text { A2g } 10 \\ & (71.4 \%) \end{aligned}$
			$\begin{aligned} & \mathrm{A} 2 \mathrm{~m} 12 \\ & (66.7 \%) \end{aligned}$
		A11	$\begin{aligned} & \text { A11b } 8 \\ & (57.1 \%) \end{aligned}$
		$\begin{gathered} \text { A24 } 7 \\ (70.0 \%) \end{gathered}$	A24 7 (70.0\%)
	HV	$\begin{gathered} \text { HV14 } 22 \\ (62.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { HV14 } 22 \\ (62.9 \%) \\ \hline \end{gathered}$
	S	S	S 11 (50.0\%)
	W	$\begin{gathered} \text { W3 } 34 \\ (61.8 \%) \end{gathered}$	$\begin{aligned} & \text { W3a } 32 \\ & (60.4 \%) \end{aligned}$

HV	HV0	$\begin{aligned} & \text { HV0d } 7 \\ & (53.8 \%) \end{aligned}$
	$\begin{aligned} & \hline \text { HV4 } 56 \\ & (58.3 \%) \end{aligned}$	$\begin{gathered} \hline \text { HV4a } 47 \\ (67.1 \%) \\ \hline \end{gathered}$
	HV9	HV9 8 (53.3\%)
	$\begin{gathered} \text { HV14 } 46 \\ (80.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} \text { HV14a } 45 \\ (81.8 \%) \\ \hline \end{gathered}$
	$\begin{gathered} \hline \text { HV16 } 10 \\ (66.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { HV16 10 } \\ (66.7 \%) \\ \hline \end{gathered}$
I	I1	I1 11 (52.4\%)
		I1b 19 (51.4\%)
		I1c 7 (50.0\%)
	I2	I2a 13 (50.0\%)
	I3 38 (58.5\%)	I3a 23 (63.9\%)
		I3d 6 (50.0\%)
N	N2 7 (63.6\%)	N2a 7 (63.6\%)
	N7 8 (57.1\%)	
P	P9 7 (63.6\%)	
R	R2	$\begin{aligned} & \text { R2d } 10 \\ & (58.8 \%) \\ & \hline \end{aligned}$
	R8 64 (63.4\%)	$\begin{aligned} & \text { R8b } 42 \\ & (87.5 \%) \\ & \hline \end{aligned}$
T	T1	T1b 25 (62.5\%)
	T2	T2n 7 (70.0\%)
U	U7	$\begin{aligned} & \text { U7b } 61 \\ & (53.5 \%) \\ & \hline \end{aligned}$
	U8	$\begin{aligned} & \text { U8a } 57 \\ & (61.3 \%) \end{aligned}$
	U9 9 (56.2\%)	
V	V5 7 (70.0\%)	V5 7 (70.0\%)
	$\begin{array}{r} \text { V10 } 15 \\ (62.5 \%) \\ \hline \end{array}$	V10a 9 (81.8\%)
	V12 6 (60.0\%)	V12 6 (60.0\%)
	V22 6 (50.0\%)	V22 6 (50.0\%)
W	W1	$\begin{aligned} & \text { W1b } 15 \\ & (57.7 \%) \end{aligned}$
	$\begin{aligned} & \text { W3 } 72 \\ & (52.2 \%) \end{aligned}$	W3a 46 (50.0\%)
		$\begin{aligned} & \text { W3b } 25 \\ & (58.1 \%) \\ & \hline \end{aligned}$
	$\begin{aligned} & \text { W6 } 46 \\ & (54.1 \%) \end{aligned}$	$\begin{aligned} & \text { W6a } 11 \\ & (55.0 \%) \end{aligned}$
X	X2	X2p 6 (60.0\%)

Supplementary Table S6-Analysis of m.309_310insCCT mtDNA variant frequency in haplogroups (number between brackets) using full length sequence set (left) or control region sequence set (right) deposited in MITOMAP database.

Using Full Length sequence set			
Lineage	Top Level HG	Top Level HG Branch (ltr-num)	HG Branch (ltr-numltr)
$\begin{aligned} & \text { M } 689 \\ & (6.4 \%) \end{aligned}$	M	$\begin{gathered} \text { M50 } 9 \\ (50.0 \%) \\ \hline \end{gathered}$	$\begin{aligned} & \text { M50a } 8 \\ & (61.5 \%) \end{aligned}$
		$\begin{aligned} & \text { M53 } 17 \\ & (65.4 \%) \end{aligned}$	$\begin{gathered} \text { M53b } 16 \\ (69.6 \%) \end{gathered}$

Using Control Region sequence set			
Lineage	Top Level HG	Top Level HG Branch (ltr-num)	HG Branch (ltr-num-ltr)
	B	B2	B2y 30 (54.5\%)
	H	H66 13 (50.0%)	H66a 13 (50.0%)

Supplementary Table S7-Analysis of m.310T>C mtDNA variant frequency in haplogroups (number between brackets) using full length sequence set (left) or control region sequence set (right) deposited in MITOMAP database.

Using Full Length sequence set			
Lineage	Top Level HG	Top Level HG Branch (ltrnum)	HG Branch (ltr-numltr)
$\begin{gathered} \text { L } 2092 \\ (33.8 \%) \end{gathered}$	L2	L2	$\begin{gathered} \text { L2e } 9 \\ (52.9 \%) \end{gathered}$
	$\begin{gathered} \text { L6 } 7 \\ (58.3 \%) \end{gathered}$	$\begin{gathered} \text { L6 } 7 \\ (58.3 \%) \end{gathered}$	
$\begin{aligned} & \text { M } 4436 \\ & (41.4 \%) \end{aligned}$	C	C	$\begin{gathered} \text { C } 297 \\ (66.0 \%) \end{gathered}$
		$\begin{aligned} & \text { C1 187 } \\ & (59.9 \%) \end{aligned}$	$\begin{aligned} & \text { C1b } 74 \\ & (58.7 \%) \end{aligned}$
			$\begin{gathered} \text { C1c } 44 \\ (74.6 \%) \\ \hline \end{gathered}$
			$\begin{aligned} & \text { C1d } 66 \\ & (55.0 \%) \end{aligned}$
		C4	$\begin{gathered} \text { C4 } 15 \\ (51.7 \%) \end{gathered}$
			$\begin{aligned} & \text { C4c } 23 \\ & (69.7 \%) \end{aligned}$
	D	D1	$\begin{gathered} \text { D1j } 13 \\ (61.9 \%) \end{gathered}$
		$\begin{gathered} \text { D2 } 53 \\ (61.6 \%) \end{gathered}$	$\begin{aligned} & \text { D2a } 42 \\ & (66.7 \%) \end{aligned}$
			$\begin{aligned} & \text { D2b } 10 \\ & (66.7 \%) \end{aligned}$
		D4	$\begin{gathered} \text { D4 36 } \\ (51.4 \%) \end{gathered}$
			$\begin{aligned} & \hline \text { D4a } 88 \\ & (56.8 \%) \end{aligned}$
			$\begin{gathered} \hline \text { D4b } 136 \\ (55.3 \%) \\ \hline \end{gathered}$
			$\begin{aligned} & \mathrm{D} 4 \mathrm{~g} 44 \\ & (54.3 \%) \end{aligned}$
			$\begin{aligned} & \hline \text { D4o } 29 \\ & (54.7 \%) \\ & \hline \end{aligned}$
			$\begin{gathered} \text { D4s } 9 \\ (69.2 \%) \end{gathered}$
		D6	$\begin{gathered} \hline \text { D6c } 7 \\ (58.3 \%) \\ \hline \end{gathered}$

Using Control Region sequence set			
Lineage	Top Level HG	Top Level HG Branch (ltr-num)	HG Branch (ltr-num-ltr)
$\begin{gathered} \text { L 1878 } \\ (22.4 \%) \end{gathered}$	L4	L4	L4 7 (58.3\%)
$\begin{aligned} & \text { M } 6220 \\ & (26.6 \%) \end{aligned}$	C	C4	$\begin{aligned} & \text { C4e } 10 \\ & (55.6 \%) \\ & \hline \end{aligned}$
		C7	C7 21 (50.0\%)
	D	D1	D1 63 (56.2\%)
			$\begin{aligned} & \hline \text { D1a 17 } \\ & (85.0 \%) \\ & \hline \end{aligned}$
			$\begin{aligned} & \text { D1e } 19 \\ & (51.4 \%) \end{aligned}$
			$\begin{gathered} \text { D1f } 19 \\ (59.4 \%) \end{gathered}$
		$\begin{aligned} & \hline \text { D2 178 } \\ & \text { (88.6\%) } \end{aligned}$	$\begin{aligned} & \hline \text { D2c } 176 \\ & (100.0 \%) \end{aligned}$
		D4	D4 26 (70.3\%)
			$\begin{aligned} & \hline \text { D4g } 91 \\ & (54.2 \%) \end{aligned}$
		D5	D5 11 (52.4\%)
			$\begin{gathered} \text { D5c } 21 \\ (75.0 \%) \\ \hline \end{gathered}$
		D6	$\begin{gathered} \hline \text { D6c } 30 \\ (68.2 \%) \\ \hline \end{gathered}$
	G	G	G 24 (77.4\%)
	M	M3	$\begin{aligned} & \text { M3c } 33 \\ & (51.6 \%) \\ & \hline \end{aligned}$
		M5	$\begin{aligned} & \text { M5c } 15 \\ & (55.6 \%) \\ & \hline \end{aligned}$
		M9	$\begin{aligned} & \text { M9 159 } \\ & (68.2 \%) \\ & \hline \end{aligned}$
		M10	M10 9 (81.8\%)

		M42	$\begin{gathered} \text { M42b } 10 \\ (55.6 \%) \end{gathered}$
		$\begin{gathered} \text { M44 } 8 \\ (66.7 \%) \end{gathered}$	$\begin{aligned} & \text { M44a } 7 \\ & (63.6 \%) \end{aligned}$
		$\begin{aligned} & \text { M45 } 18 \\ & (64.3 \%) \end{aligned}$	$\begin{gathered} \text { M45a } 11 \\ (57.9 \%) \\ \hline \end{gathered}$
		$\begin{aligned} & \text { M46 } 10 \\ & (83.3 \%) \end{aligned}$	
		$\begin{aligned} & \text { M50 } 15 \\ & \text { (83.3\%) } \end{aligned}$	$\begin{gathered} \text { M50a } 12 \\ (92.3 \%) \\ \hline \end{gathered}$
		M52	$\begin{gathered} \hline \text { M52b } 11 \\ (78.6 \%) \end{gathered}$
		$\begin{aligned} & \text { M53 } 23 \\ & (88.5 \%) \end{aligned}$	$\begin{gathered} \hline \text { M53b } 22 \\ (95.7 \%) \\ \hline \end{gathered}$
		$\begin{gathered} \text { M54 6 } \\ (54.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} \text { M54 } 6 \\ (54.5 \%) \\ \hline \end{gathered}$
		$\begin{aligned} & \text { M57 11 } \\ & (78.6 \%) \end{aligned}$	
		$\begin{aligned} & \text { M61 14 } \\ & (53.8 \%) \end{aligned}$	
		$\begin{aligned} & \text { M62 } 18 \\ & (81.8 \%) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { M62b } 15 \\ (83.3 \%) \\ \hline \end{gathered}$
		$\begin{aligned} & \text { M71 48 } \\ & (51.6 \%) \end{aligned}$	$\begin{gathered} \hline \text { M71a } 27 \\ (62.8 \%) \\ \hline \end{gathered}$
		$\begin{aligned} & \text { M72 } 10 \\ & (52.6 \%) \end{aligned}$	$\begin{aligned} & \text { M72a } 9 \\ & (60.0 \%) \end{aligned}$
		$\begin{aligned} & \text { M73 } 14 \\ & (56.0 \%) \\ & \hline \end{aligned}$	$\begin{gathered} \text { M73 } 8 \\ (72.7 \%) \\ \hline \end{gathered}$
		$\begin{aligned} & \text { M76 } 15 \\ & (60.0 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M76 13 } \\ & (81.2 \%) \end{aligned}$
		$\begin{aligned} & \text { M91 } 16 \\ & (69.6 \%) \end{aligned}$	$\begin{gathered} \text { M91a } 12 \\ (66.7 \%) \\ \hline \end{gathered}$
		$\begin{gathered} \text { Z1 } 50 \\ (56.8 \%) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Z1a } 49 \\ & (57.0 \%) \end{aligned}$
	Z	Z3	$\begin{aligned} & \text { Z3a } 17 \\ & (77.3 \%) \\ & \hline \end{aligned}$
		Z4	$\begin{gathered} \text { Z4a } 9 \\ (52.9 \%) \\ \hline \end{gathered}$
			$\begin{aligned} & \text { A2 } 198 \\ & \text { (55.9\%) } \end{aligned}$
			$\begin{aligned} & \text { A2a 163 } \\ & (72.1 \%) \\ & \hline \end{aligned}$
$\begin{gathered} \text { N } 13904 \\ (41.8 \%) \end{gathered}$	$\begin{gathered} \text { A } 776 \\ (55.6 \%) \end{gathered}$	$\begin{aligned} & \text { A2 } 546 \\ & (61.0 \%) \end{aligned}$	$\begin{aligned} & \text { A2b } 26 \\ & (60.5 \%) \\ & \hline \end{aligned}$
			$\begin{aligned} & \text { A2d } 15 \\ & (60.0 \%) \\ & \hline \end{aligned}$
			$\begin{aligned} & \mathrm{A} 2 \mathrm{~g} 11 \\ & (84.6 \%) \end{aligned}$

		A11	$\begin{aligned} & \text { A11b } 9 \\ & (64.3 \%) \\ & \hline \end{aligned}$
		A15 109	$\begin{aligned} & \hline \text { A15 99 } \\ & (69.2 \%) \end{aligned}$
		(66.9\%)	A15b 10 (50.0%)
		$\begin{gathered} \text { A24 } 8 \\ (80.0 \%) \end{gathered}$	A24 8 (80.0\%)
	B	$\begin{gathered} \text { B2 } 384 \\ (61.8 \%) \end{gathered}$	B2 11 (68.8\%)
			$\begin{aligned} & \text { B2a 119 } \\ & (74.8 \%) \\ & \hline \end{aligned}$
			$\begin{gathered} \text { B2b } 63 \\ (64.9 \%) \\ \hline \end{gathered}$
			$\begin{gathered} \text { B2c } 64 \\ (69.6 \%) \end{gathered}$
			$\begin{gathered} \text { B2y } 51 \\ (92.7 \%) \\ \hline \end{gathered}$
		B4	$\begin{gathered} \text { B4e } 10 \\ (62.5 \%) \\ \hline \end{gathered}$
			$\begin{aligned} & \text { B4m } 42 \\ & (66.7 \%) \\ & \hline \end{aligned}$
		B6	B6 8 (53.3\%)
	F	F	F 17 (68.0\%)
		F2	F2i 12 (50.0\%)
	H	H1	$\begin{aligned} & \text { H1u } 10 \\ & \text { (71.4\%) } \end{aligned}$
		H5	$\begin{aligned} & \mathrm{H} 5 \mathrm{~b} 25 \\ & (65.8 \%) \end{aligned}$
			H5n 5 (50.0\%)
		H7	H7i 8 (57.1\%)
		H14	$\begin{gathered} \hline \text { H14b } 34 \\ (50.0 \%) \\ \hline \end{gathered}$
		H41 15 (78.9\%)	H41a 15 (78.9\%)
		H55 26 (76.5\%)	$\begin{gathered} \hline \text { H55b } 26 \\ (76.5 \%) \end{gathered}$
		$\begin{aligned} & \mathrm{H} 5788 \\ & (59.1 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} 5788 \\ & (59.1 \%) \\ & \hline \end{aligned}$
		H66 20 (76.9\%)	$\begin{gathered} \hline \text { H66a } 20 \\ (76.9 \%) \\ \hline \end{gathered}$
		$\begin{gathered} \hline \text { H101 } 29 \\ (82.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H} 10129 \\ (82.9 \%) \\ \hline \end{gathered}$

		B5	$\begin{aligned} & \text { B5b 78 } \\ & (50.6 \%) \end{aligned}$
	F	F1	$\begin{aligned} & \text { F1b } 77 \\ & (55.4 \%) \end{aligned}$
			$\begin{aligned} & \text { F1e 17 } \\ & (56.7 \%) \end{aligned}$
		F3	$\begin{aligned} & \text { F3a } 41 \\ & (59.4 \%) \end{aligned}$
	H	H1	H1h 14 (70.0\%)
			$\begin{gathered} \text { H1j } 75 \\ (67.0 \%) \\ \hline \end{gathered}$
			$\begin{aligned} & \text { H1n } 53 \\ & (80.3 \%) \end{aligned}$
			$\begin{gathered} \text { H1r } 9 \\ (90.0 \%) \\ \hline \end{gathered}$
			$\begin{aligned} & \text { H1v } 10 \\ & (62.5 \%) \end{aligned}$
			$\begin{gathered} \mathrm{H} 1 \mathrm{z} 8 \\ (53.3 \%) \end{gathered}$
		$\begin{aligned} & \text { H2 } 457 \\ & (55.7 \%) \end{aligned}$	$\begin{gathered} \mathrm{H} 2 \mathrm{a} 432 \\ (55.5 \%) \end{gathered}$
			$\begin{aligned} & \text { H2b } 19 \\ & (65.5 \%) \end{aligned}$
		H3	$\begin{aligned} & \text { H3b } 46 \\ & (63.0 \%) \end{aligned}$
		H5	H5b 55 (71.4\%)
		H6 240	$\begin{gathered} \text { H6a } 214 \\ (66.0 \%) \\ \hline \end{gathered}$
		(63.7\%)	$\begin{aligned} & \text { H6b } 19 \\ & (70.4 \%) \end{aligned}$
		$\begin{aligned} & \text { H7 } 162 \\ & (50.8 \%) \end{aligned}$	$\begin{aligned} & \text { H7a } 42 \\ & (76.4 \%) \end{aligned}$
			$\begin{aligned} & \text { H7c } 31 \\ & (64.6 \%) \end{aligned}$
			$\begin{aligned} & \text { H7e } 23 \\ & (95.8 \%) \\ & \hline \end{aligned}$
		$\begin{gathered} \text { H8 } 29 \\ (53.7 \%) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{H} 8 \mathrm{c} 14 \\ & (60.9 \%) \end{aligned}$
		$\begin{gathered} \text { H10 } 116 \\ (75.8 \%) \end{gathered}$	$\begin{aligned} & \text { H10a } 21 \\ & (72.4 \%) \end{aligned}$
			$\begin{gathered} \mathrm{H} 10 \mathrm{e} 53 \\ (84.1 \%) \\ \hline \end{gathered}$
		H11	$\begin{aligned} & \text { H11b } 8 \\ & (61.5 \%) \end{aligned}$
		$\begin{gathered} \hline \text { H13 } 203 \\ (64.4 \%) \\ \hline \end{gathered}$	$\begin{gathered} \text { H13a } 182 \\ (65.7 \%) \\ \hline \end{gathered}$

		$\begin{aligned} & \mathrm{H} 1017 \\ & (50.0 \%) \end{aligned}$	$\begin{aligned} & \mathrm{H} 1017 \\ & (50.0 \%) \end{aligned}$
	$\begin{aligned} & \text { HV } 442 \\ & (57.0 \%) \end{aligned}$	HV0	$\begin{aligned} & \text { HV0d } 9 \\ & (69.2 \%) \end{aligned}$
		$\begin{aligned} & \text { HV1 } 81 \\ & (60.9 \%) \end{aligned}$	$\begin{gathered} \hline \text { HV1a } 48 \\ (64.0 \%) \\ \hline \end{gathered}$
			$\begin{gathered} \hline \text { HV1b } 30 \\ (60.0 \%) \\ \hline \end{gathered}$
		$\begin{aligned} & \text { HV2 } 25 \\ & (55.6 \%) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { HV2a } 21 \\ (56.8 \%) \\ \hline \end{gathered}$
		HV4 76 (79.2\%)	$\begin{gathered} \hline \text { HV4 } 9 \\ (52.9 \%) \\ \hline \end{gathered}$
			$\begin{gathered} \hline \text { HV4a } 60 \\ (85.7 \%) \\ \hline \end{gathered}$
		$\begin{aligned} & \text { HV6 } 12 \\ & (66.7 \%) \end{aligned}$	$\begin{aligned} & \text { HV6 } 9 \\ & (60.0 \%) \end{aligned}$
		HV9 29 (78.4\%)	$\begin{aligned} & \text { HV9 } 14 \\ & \text { (93.3\%) } \end{aligned}$
			$\begin{aligned} & \text { HV9a } 8 \\ & (66.7 \%) \end{aligned}$
		HV12	$\begin{gathered} \hline \text { HV12a } 7 \\ (58.3 \%) \\ \hline \end{gathered}$
		$\begin{aligned} & \text { HV13 } 9 \\ & (64.3 \%) \end{aligned}$	
		$\begin{gathered} \text { HV14 50 } \\ (87.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} \text { HV14a } 49 \\ (89.1 \%) \\ \hline \end{gathered}$
		$\begin{gathered} \text { HV16 } 13 \\ (86.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} \text { HV16 } 13 \\ (86.7 \%) \\ \hline \end{gathered}$
		$\begin{gathered} \hline \text { HV18 } 10 \\ (76.9 \%) \\ \hline \end{gathered}$	HV18 10 (76.9\%)
	I	I	I 14 (51.9\%)
		I1	$\begin{gathered} \text { I1 14 } \\ (66.7 \%) \end{gathered}$
			$\begin{gathered} \text { I1b } 20 \\ (54.1 \%) \end{gathered}$
			I1c 8 (57.1\%)
			$\begin{gathered} \text { I1f } 15 \\ (71.4 \%) \end{gathered}$
		$\begin{gathered} \text { I2 } 93 \\ (55.4 \%) \end{gathered}$	$\begin{gathered} \text { I2 } 56 \\ (56.0 \%) \\ \hline \end{gathered}$
			$\begin{gathered} \hline \text { I2a 18 } \\ (69.2 \%) \end{gathered}$
			I2d 16 (76.2\%)
		$\begin{gathered} \text { I3 } 49 \\ \text { (75.4\%) } \end{gathered}$	$\begin{gathered} \text { I3a } 28 \\ (77.8 \%) \\ \hline \end{gathered}$
			$\begin{gathered} \text { I3d } 10 \\ (83.3 \%) \\ \hline \end{gathered}$

		I4	$\begin{gathered} \text { I4b } 6 \\ (54.5 \%) \\ \hline \end{gathered}$
	K	K1	$\begin{gathered} \hline \text { K1b } 100 \\ (56.2 \%) \\ \hline \end{gathered}$
			$\begin{gathered} \text { K1d } 8 \\ (66.7 \%) \\ \hline \end{gathered}$
	N	$\begin{gathered} \text { N2 } 7 \\ (63.6 \%) \end{gathered}$	$\begin{gathered} \hline \text { N2a } 7 \\ (63.6 \%) \end{gathered}$
		$\begin{gathered} \text { N7 9 } \\ (64.3 \%) \end{gathered}$	
		$\begin{aligned} & \text { N9 } 205 \\ & \text { (63.1\%) } \end{aligned}$	$\begin{gathered} \hline \text { N9a } 180 \\ (63.8 \%) \end{gathered}$
			$\begin{aligned} & \text { N9b 25 } \\ & (58.1 \%) \end{aligned}$
		N10	$\begin{aligned} & \text { N10a } 7 \\ & (50.0 \%) \end{aligned}$
		N21	$\begin{aligned} & \text { N21a } 6 \\ & (54.5 \%) \end{aligned}$
	P	$\begin{gathered} \text { P9 9 } \\ (81.8 \%) \end{gathered}$	
	R	$\begin{aligned} & \text { R0 170 } \\ & (56.5 \%) \end{aligned}$	$\begin{aligned} & \text { R0a } 151 \\ & (58.8 \%) \\ & \hline \end{aligned}$
		$\begin{gathered} \text { R1 } 43 \\ (60.6 \%) \end{gathered}$	$\begin{aligned} & \text { R1a } 36 \\ & (73.5 \%) \\ & \hline \end{aligned}$
		$\begin{gathered} \text { R2 } 38 \\ (55.9 \%) \end{gathered}$	$\begin{gathered} \hline \text { R2 14 } \\ (51.9 \%) \\ \hline \end{gathered}$
			$\begin{aligned} & \text { R2b } 12 \\ & (92.3 \%) \end{aligned}$
			$\begin{aligned} & \text { R2d } 10 \\ & (58.8 \%) \end{aligned}$
		$\begin{gathered} \text { R8 70 } \\ (69.3 \%) \end{gathered}$	$\begin{aligned} & \text { R8a } 28 \\ & (52.8 \%) \\ & \hline \end{aligned}$
			$\begin{aligned} & \text { R8b } 42 \\ & (87.5 \%) \end{aligned}$
		R9	$\begin{aligned} & \text { R9b } 68 \\ & (50.4 \%) \\ & \hline \end{aligned}$
		R11	$\begin{aligned} & \text { R11b } 9 \\ & (75.0 \%) \\ & \hline \end{aligned}$
		$\begin{gathered} \text { R21 } 6 \\ (50.0 \%) \end{gathered}$	$\begin{gathered} \hline \text { R21 6 } \\ (50.0 \%) \\ \hline \end{gathered}$
		R30	$\begin{aligned} & \hline \text { R30a } 26 \\ & (53.1 \%) \\ & \hline \end{aligned}$
	T	$\begin{aligned} & \text { T1 342 } \\ & (55.8 \%) \end{aligned}$	$\begin{aligned} & \hline \text { T1a 310 } \\ & (55.2 \%) \\ & \hline \end{aligned}$
			$\begin{aligned} & \text { T1b } 29 \\ & (72.5 \%) \end{aligned}$
		T2	$\begin{gathered} \hline \text { T2 44 } \\ (51.8 \%) \\ \hline \end{gathered}$

$\begin{aligned} & \text { ò } \\ & 0 \\ & 0 \\ & \text { ò } \\ & \text { ò } \end{aligned}$																							
		$$		$\begin{aligned} & \text { o્ } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ふ } \\ & \text { O } \\ & \text { N } \end{aligned}$										$\begin{aligned} & \text { Oc c } \\ & \text { ol } \\ & \text { de } \\ & \text { oc } \end{aligned}$		$\begin{aligned} & \underset{N}{c} \\ & \text { N } \\ & =0.0 \end{aligned}$		$\stackrel{\square}{\ddagger}$				
		$\begin{array}{ll} \hline 0 & \leq \\ 0 & \omega \\ 0 & 0 \\ 0 & 0 \end{array}$	$\left\lvert\,\right.$						$\stackrel{3}{3}$ 6 6 0. 0.		$\begin{aligned} & < \\ & \infty \\ & \infty \\ & \stackrel{1}{n} \\ & \underset{\sim}{c} \\ & 0 \end{aligned}$				$\begin{array}{cc} \text { Dr c } \\ \text { N } \\ 0 & 0 \\ 0 \\ 0 & 0 \end{array}$								

		$\begin{aligned} & \text { V22 } 10 \\ & (83.3 \%) \end{aligned}$	$\begin{aligned} & \text { V22 } 10 \\ & (83.3 \%) \end{aligned}$
	W	W1	$\begin{aligned} & \text { W1a } 23 \\ & (53.5 \%) \end{aligned}$
			$\begin{aligned} & \text { W1b } 15 \\ & (57.7 \%) \end{aligned}$
		$\begin{gathered} \text { W3 } 83 \\ (60.1 \%) \end{gathered}$	$\begin{aligned} & \text { W3a } 54 \\ & (58.7 \%) \end{aligned}$
			$\begin{aligned} & \text { W3b } 27 \\ & (62.8 \%) \end{aligned}$
		W5	$\begin{aligned} & \text { W5a } 21 \\ & (56.8 \%) \\ & \hline \end{aligned}$
		$\begin{gathered} \text { W6 } 53 \\ (62.4 \%) \end{gathered}$	$\begin{aligned} & \text { W6 } 24 \\ & (51.1 \%) \end{aligned}$
			W6a 14 (70.0\%)
	X	X2	$\begin{aligned} & \text { X2a } 20 \\ & (55.6 \%) \end{aligned}$
			$\begin{aligned} & \text { X2e } 29 \\ & (67.4 \%) \end{aligned}$
			$\begin{aligned} & \text { X2i } 12 \\ & (70.6 \%) \end{aligned}$
			$\begin{gathered} \text { X2p } 7 \\ (70.0 \%) \end{gathered}$
		$\begin{gathered} \text { X3 6 } \\ (50.0 \%) \\ \hline \end{gathered}$	
		$\begin{gathered} \text { X4 8 } \\ (80.0 \%) \end{gathered}$	X4 8 (80.0\%)
	$\begin{gathered} \text { Y } 70 \\ (50.4 \%) \\ \hline \end{gathered}$	$\begin{gathered} \text { Y2 } 29 \\ (53.7 \%) \end{gathered}$	$\begin{gathered} \mathrm{Y} 2 \mathrm{a} 24 \\ (54.5 \%) \\ \hline \end{gathered}$

Supplementary Table S8-Analysis of m.16319G>A mtDNA variant frequency in haplogroups (number between brackets) using full length sequence set (left) or control region sequence set (right) deposited in MITOMAP database.

Using Full Length sequence set			
Lineage	Top Level HG	Top Level HG Branch (ltr-num)	HG Branch (ltr-num-ltr)
$\begin{aligned} & \text { M } 939 \\ & (8.8 \%) \end{aligned}$	D	$\begin{gathered} \hline \text { D339 } \\ (100.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { D3 39 } \\ (100.0 \%) \\ \hline \end{gathered}$
	M	$\begin{aligned} & \text { M2 } 232 \\ & (95.1 \%) \end{aligned}$	$\begin{gathered} \hline \text { M2a } 129 \\ (99.2 \%) \\ \hline \end{gathered}$
			$\begin{aligned} & \text { M2b } 96 \\ & (94.1 \%) \\ & \hline \end{aligned}$
		$\begin{gathered} \text { M8 88 } \\ (97.8 \%) \end{gathered}$	$\begin{aligned} & \text { M8a } 87 \\ & (97.8 \%) \end{aligned}$
		$\begin{gathered} \text { M32 } 162 \\ (97.0 \%) \end{gathered}$	$\begin{aligned} & \text { M32a } 10 \\ & (100.0 \%) \\ & \hline \end{aligned}$
			$\begin{gathered} \hline \text { M32c } 152 \\ (99.3 \%) \\ \hline \end{gathered}$
		M35	$\begin{gathered} \text { M35a } 14 \\ (50.0 \%) \end{gathered}$
		$\begin{aligned} & \hline \text { M40 } 19 \\ & (65.5 \%) \\ & \hline \end{aligned}$	$\begin{gathered} \text { M40a } 19 \\ (67.9 \%) \\ \hline \end{gathered}$
		$\begin{gathered} \text { M467 } \\ (58.3 \%) \\ \hline \end{gathered}$	
		$\begin{gathered} \hline \text { M55 13 } \\ (100.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { M55 13 } \\ (100.0 \%) \\ \hline \end{gathered}$
		$\begin{gathered} \hline \text { M60 } \\ (64.3 \%) \end{gathered}$	$\begin{aligned} & \text { M60a } 9 \\ & (90.0 \%) \end{aligned}$
$\begin{aligned} & \text { N } 1810 \\ & (5.4 \%) \end{aligned}$	$\begin{aligned} & \text { A } 1356 \\ & (97.2 \%) \end{aligned}$	A	A 65 (98.5\%)
		$\begin{gathered} \text { A1 13 } \\ (100.0 \%) \end{gathered}$	$\begin{gathered} \hline \text { A1a 12 } \\ (100.0 \%) \end{gathered}$
		$\begin{aligned} & \text { A2 } 859 \\ & (96.0 \%) \end{aligned}$	$\begin{aligned} & \text { A2 } 344 \\ & (97.2 \%) \\ & \hline \end{aligned}$
			$\begin{aligned} & \hline \text { A2a } 225 \\ & (99.6 \%) \end{aligned}$
			$\begin{gathered} \hline \text { A2b } 43 \\ (100.0 \%) \\ \hline \end{gathered}$
			$\begin{aligned} & \text { A2d } 21 \\ & (84.0 \%) \end{aligned}$
			$\begin{aligned} & \text { A2f } 18 \\ & (94.7 \%) \\ & \hline \end{aligned}$

Using Control Region sequence set			
Lineage	Top Level HG	Top Level HG Branch (ltr-num)	HG Branch (ltr-num-ltr)
$\begin{gathered} \hline \text { L } 159 \\ (1.9 \%) \end{gathered}$	L4	L4	L4 7 (58.3\%)
$\begin{gathered} \text { M } 1344 \\ (5.7 \%) \end{gathered}$	M	$\begin{aligned} & \text { M2 } 124 \\ & (53.9 \%) \end{aligned}$	$\begin{gathered} \hline \text { M2a } 110 \\ (90.9 \%) \\ \hline \end{gathered}$
			$\begin{aligned} & \text { M2b } 14 \\ & (66.7 \%) \end{aligned}$
		$\begin{aligned} & \text { M8 435 } \\ & (75.5 \%) \end{aligned}$	$\begin{gathered} \hline \text { M8a } 435 \\ (99.1 \%) \end{gathered}$
		M12	$\begin{gathered} \text { M12b } 82 \\ (59.0 \%) \\ \hline \end{gathered}$
		$\begin{aligned} & \hline \text { M32 50 } \\ & (98.0 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { M32c } 48 \\ & (100.0 \%) \\ & \hline \end{aligned}$
		M40	$\begin{aligned} & \text { M40a } 8 \\ & (50.0 \%) \end{aligned}$
		$\begin{gathered} \text { M55 } 22 \\ (100.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} \text { M55 } 22 \\ (100.0 \%) \\ \hline \end{gathered}$
		$\begin{aligned} & \hline \text { M60 13 } \\ & (54.2 \%) \end{aligned}$	$\begin{gathered} \hline \text { M60a } 13 \\ (81.2 \%) \\ \hline \end{gathered}$
$\begin{aligned} & \text { N } 4381 \\ & (10.6 \%) \end{aligned}$	$\begin{aligned} & \text { A } 3718 \\ & (98.6 \%) \end{aligned}$	A	$\begin{gathered} \text { A 916 } \\ (97.7 \%) \end{gathered}$
		$\begin{gathered} \text { A1 } 29 \\ (100.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} \text { A1a } 29 \\ (100.0 \%) \\ \hline \end{gathered}$
		$\begin{aligned} & \text { A2 } 1570 \\ & (98.6 \%) \end{aligned}$	$\begin{aligned} & \hline \text { A2 } 797 \\ & (98.8 \%) \\ & \hline \end{aligned}$
			$\begin{aligned} & \hline \text { A2a } 332 \\ & (98.2 \%) \end{aligned}$
			$\begin{aligned} & \hline \text { A2b } 222 \\ & (100.0 \%) \end{aligned}$
			$\begin{gathered} \hline \text { A2d 98 } \\ (100.0 \%) \\ \hline \end{gathered}$
			$\begin{gathered} \hline \text { A2g } 14 \\ (100.0 \%) \\ \hline \end{gathered}$
			$\begin{aligned} & \text { A2m } 18 \\ & (100.0 \%) \\ & \hline \end{aligned}$
			$\begin{gathered} \text { A2q } 19 \\ (100.0 \%) \\ \hline \end{gathered}$

	B	B2	B2y 8 (57.1%)
	H	H31	H31a 12 (92.3%)
	I	I 1	I1c 12 (85.7%)
	N	N2 11 (100.0%)	N2a 11 (100.0%)
	R	R7 28 (100.0%)	R7a 16 (100.0%)

