Synthesis, Characterization and Application of Novel Coordination and Organometallic Complexes

A special issue of Inorganics (ISSN 2304-6740). This special issue belongs to the section "Organometallic Chemistry".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 487

Special Issue Editor


E-Mail Website
Guest Editor
Inorganic Chemistry Department, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
Interests: organometallic complexes; copper-based complexes; photocatalysis; luminescent materials; small-molecule activation

Special Issue Information

Dear Colleagues,

This Special Issue of Inorganics highlights the synthesis, characterization, and application of innovative coordination and organometallic complexes in cutting-edge scientific and industrial fields. Coordination and organometallic chemistry underpin significant advancements in homogeneous and heterogeneous catalysis, light-emitting devices, molecular sensors, renewable energy technologies, and drug discovery. Particular attention is paid in this Issue to complexes with unique electronic, optical, and catalytic properties tailored for applications such as photocatalysis, photocatalytic water splitting, CO2 reduction, OLEDs/LEECs, and metallopharmaceuticals for anticancer or antimicrobial therapies.

We invite the submission of contributions that delve into the rational design and synthesis of novel metal complexes, mechanistic insights into their reactivity, and their integration into real-world applications. Structural elucidation via advanced spectroscopic or crystallographic methods is also a key focus, providing a critical understanding of structure–function relationships.

This Special Issue aims to provide a platform to share the latest advances, offering a comprehensive overview of the pivotal role coordination and organometallic complexes play in addressing the global challenges of sustainability, health, and energy innovation. Researchers are encouraged to submit original articles and reviews.

Dr. Alan R. Cabrera
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • coordination complexes
  • organometallic chemistry
  • homogeneous catalysis
  • synthesis of metal complexes
  • structural characterization
  • photophysical properties
  • medicinal applications
  • OLED/LEEC emitters

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 3742 KiB  
Article
Mixed 3d-3d’-Metal Complexes: A Dicobalt(III)Iron(III) Coordination Cluster Based on Pyridine-2-Amidoxime
by Sotiris G. Skiadas, Christina D. Polyzou, Zoi G. Lada, Rodolphe Clérac, Yiannis Sanakis, Pierre Dechambenoit and Spyros P. Perlepes
Inorganics 2025, 13(5), 171; https://doi.org/10.3390/inorganics13050171 - 17 May 2025
Viewed by 382
Abstract
In the present work, we describe the use of the potentially tridentate ligand pyridine-2-amidoxime (NH2paoH) in Fe-Co chemistry. The 1:1:3 FeIII(NO3)3·9H2O/CoII(ClO4)2·6H2O/NH2paoH reaction mixture [...] Read more.
In the present work, we describe the use of the potentially tridentate ligand pyridine-2-amidoxime (NH2paoH) in Fe-Co chemistry. The 1:1:3 FeIII(NO3)3·9H2O/CoII(ClO4)2·6H2O/NH2paoH reaction mixture in MeOH gave complex [CoIII2FeIII(NH2pao)6](ClO4)2(NO3) (1) in ca. 55% yield, the cobalt(II) being oxidized to cobalt(III) under the aerobic conditions. The same complex was isolated using cobalt(II) and iron(II) sources, the oxidation now taking place at both metal sites. The structure of 1 contains two structurally similar, crystallographically independent cations [CoIII2FeIII(NH2pao)6]3+ which are strictly linear by symmetry. The central high-spin FeIII ion is connected to each of the terminal low-spin CoIII ions through the oximato groups of three 2.1110 (Harris notation) NH2pao ligands, in such a way that the six O atoms are bonded to the octahedral FeIII center ({FeIIIO6} coordination sphere). Each terminal octahedral CoIII ions is bonded to six N atoms (three oximato, three 2-pyridyl) from three NH2pao groups ({CoIIIN6} coordination sphere). The IR and Raman spectra of the complex are discussed in terms of the coordination mode of the organic ligand, and the non-coordinating nature of the inorganic ClO4 and NO3 counterions. The UV/VIS spectrum of the complex in EtOH shows the two spin-allowed d-d transitions of the low-spin 3d6 cobalt(III) and a charge-transfer NH2pao → FeIII band. The δ and ΔΕQ 57Fe-Mössbauer parameter of 1 at 80 K show the presence of an isolated high-spin FeIII center. Variable-temperature (1.8 K–300 K) and variable-field (0–7 T) magnetic studies confirm the isolated character of FeIII. A critical discussion of the importance of NH2paoH and its anionic forms (NH2pao, NHpao2−) in homo- and heterometallic chemistry is also attempted. Full article
Show Figures

Figure 1

Back to TopTop