ijms-logo

Journal Browser

Journal Browser

25th Anniversary of IJMS: Advances in Physical Chemistry and Chemical Physics

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Physical Chemistry and Chemical Physics".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1430

Special Issue Editors


E-Mail Website
Guest Editor
1. Laboratory of Structural and Computational Physical-Chemistry for Nanosciences and QSAR, Biology-Chemistry Department, West University of Timisoara, Str. Pestalozzi 16, 300115 Timisoara, Romania
2. Laboratory of Renewable Energies-Photovoltaics, R&D National Institute for Electrochemistry and Condensed Matter—INCEMC–Timisoara, Str. Dr. Aurel Podeanu 144, 300569 Timișoara, Romania
Interests: quantum physical chemistry; nanochemistry; reactivity indices and principles; electronegativity; density functional theory; path integrals; enzyme kinetics; QSAR; epistemology and philosophy of science
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
2. Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
Interests: molecular structural dynamics; protein structural dynamics; time-resolved scattering; time-resolved spectroscopy; X-ray liquidography; femtochemistry; ultrafast phenomena
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Celebrating the 25th anniversary of the International Journal of Molecular Sciences (IJMS), this Special Issue highlights recent advances in physical chemistry and chemical physics at the molecular level. Over the past decades, breakthroughs in quantum mechanics, time-resolved spectroscopy, single-molecule spectroscopy, computational modeling, and artificial intelligence have deepened our understanding of molecular structures, dynamics, and interactions. Key developments include ultrafast processes in excited states, reaction dynamics involving ions and radicals, photochemical transformations in molecular systems, and AI-driven predictions of reaction outcomes and molecular properties. These insights pave the way for novel theoretical frameworks and experimental techniques, such as advanced vibrational and optical spectroscopy, enhanced by machine learning algorithms, to probe molecular behaviors with unprecedented precision.

We invite original research articles and comprehensive reviews that explore molecular-scale phenomena, including reaction kinetics, electronic properties, and thermodynamic equilibria, while emphasizing interdisciplinary approaches bridging theory, experiment, and AI methodologies.

This collection aims to showcase the evolving landscape of molecular sciences, fostering innovations that align with IJMS’s legacy.

Prof. Dr. Mihai V. Putz
Prof. Dr. Hyotcherl Ihee
Dr. Carlos Miguel Costa
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • molecular dynamics
  • quantum chemistry
  • spectroscopic techniques
  • supramolecular interactions
  • computational modeling
  • AI in chemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

29 pages, 4936 KB  
Article
Choline Acetate-, L-Carnitine- and L-Proline-Based Deep Eutectic Solvents: A Comparison of Their Physicochemical and Thermal Properties in Relation to the Nature and Molar Ratios of HBAs and HBDs
by Luca Guglielmero, Angelica Mero, Spyridon Koutsoumpos, Sotiria Kripotou, Konstantinos Moutzouris, Lorenzo Guazzelli and Andrea Mezzetta
Int. J. Mol. Sci. 2025, 26(17), 8625; https://doi.org/10.3390/ijms26178625 - 4 Sep 2025
Viewed by 630
Abstract
The search for more sustainable alternatives to traditional organic solvents, in the frame of the green chemistry approach, is leading to an increasing interest toward the exploration of deep eutectic solvents (DESs), especially natural-based ones (NADESs). The great ferment in the use of [...] Read more.
The search for more sustainable alternatives to traditional organic solvents, in the frame of the green chemistry approach, is leading to an increasing interest toward the exploration of deep eutectic solvents (DESs), especially natural-based ones (NADESs). The great ferment in the use of DESs as innovative media for many applications and in the research of novel types of DESs is not matched by an equal rigor in their characterization and in the study of their physico-chemical characteristics. Nevertheless, it is evident how comparative studies encompassing the investigation of a wide range of properties in relationship with the DESs structures would be beneficial for a rational development of the field. In this work a panel of DESs featuring choline acetate, L-carnitine and L-proline as hydrogen bond acceptor constituents (HBAs) and ethylene glycol, glycerol and levulinic acid as hydrogen bond donor constituents (HBDs) in 1:2 and 1:3 molar ratios have been prepared and characterized. Their density, viscosity and optical properties have been thoroughly investigated at various temperatures, analyzing the influence of their composition in terms of type of HBA, type of HBD and molar ratio on their properties. All the proposed DESs have also been thermally characterized by TGA and DSC, providing a description of their thermal behavior in a wide range of temperature and determining their thermal stability and thermal degradation profile. Full article
Show Figures

Figure 1

12 pages, 2897 KB  
Article
Dual Effects of In Situ Coal Combustion on CaO Pellets for CO2 Capture: High-Temperature Sintering and Ash Stabilization
by Yun Long, Changqing Wang, Ruichang Xu, Lei Liu, Pengxin Zeng, Zijian Zhou and Minghou Xu
Int. J. Mol. Sci. 2025, 26(17), 8535; https://doi.org/10.3390/ijms26178535 - 2 Sep 2025
Viewed by 362
Abstract
High-temperature CaO-based CO2 capture technology, energized by in situ coal combustion, exhibits substantial promise owing to its high energy efficiency, strong compatibility, and maturity. However, sorbent deactivation mechanisms under complex coal combustion conditions, particularly for industrially required pelletized sorbents, are unclear. Pelletized [...] Read more.
High-temperature CaO-based CO2 capture technology, energized by in situ coal combustion, exhibits substantial promise owing to its high energy efficiency, strong compatibility, and maturity. However, sorbent deactivation mechanisms under complex coal combustion conditions, particularly for industrially required pelletized sorbents, are unclear. Pelletized sorbents were co-fired with four representative coals (differing in Na-K, S, and Al-Si content) in this study. Key factors were decoupled, and two competing mechanisms were revealed: (1) High-temperature sintering deactivation: Single co-firing triggers localized overheating (>900 °C), causing severe sintering and pore collapse. This reduces the specific surface area by 29% and pore volume by 50%, occludes meso-/macropores, and leads to a significant drop in initial CO2 capture capacity to 0.266–0.297 g/g. Coal types and minor residual surface impurities (<1.7%) are secondary factors. (2) Si-Al ash stabilization: During repeated co-firing (1–9 cycles), Si-Al ash components enrich on sorbents (0.1–7.6%), forming a thermally protective layer. After 20 adsorption–desorption cycles, the CO2 capture capacity loss drops from 17.6% to 3.9%, improving cycle stability. These findings clarify these dual mechanisms, providing a theoretical basis for system optimization and highlighting precise control of the combustion temperature field as critical for industrial deployment. Full article
Show Figures

Figure 1

Back to TopTop