Drought Stress and Crop Water Management in Sustainable Horticultural Production

A special issue of Horticulturae (ISSN 2311-7524). This special issue belongs to the section "Biotic and Abiotic Stress".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 10096

Special Issue Editor


E-Mail Website
Guest Editor
Embrapa Agroindústria Tropical, Fortaleza 60511-110, Brazil
Interests: water for agriculture; climate change; irrigation water management; water productivity; agriculture water footprint

Special Issue Information

Dear Colleagues,

Agriculture is more impacted by climate change than the industrial and service sectors. Extreme climate events may become more frequent, leading to water shortages and droughts, particularly in semiarid regions. Sustainable agriculture requires adaptation and preparedness measures to increase resilience, which may include deficit irrigation, lower crop water footprint, innovative water management, and soil water conservation practices. The development of new technologies and strategies, such as smart irrigation, efficient water use and management, deficit water application, soil water management, and crop water footprint, is expected to help in the achievement of these goals. 

Dr. Rubens Sonsol Gondim
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Horticulturae is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • deficit irrigation
  • water productivity
  • crop water footprint
  • soil water
  • water shortage
  • strategy use in agriculture
  • water management
  • semiarid

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 2315 KiB  
Article
Deficit Irrigation Response and Climate Resilience of Mediterranean Tomato Landraces
by Yüksel Tüzel, Hüseyin Biyke, Omar S. Harouna, Tunç Durdu, Mahmut Tepecik, Gölgen B. Oztekin, Ulaş Tunalı and Nazim S. Gruda
Horticulturae 2025, 11(1), 74; https://doi.org/10.3390/horticulturae11010074 - 11 Jan 2025
Cited by 1 | Viewed by 853
Abstract
Vegetable production worldwide is heavily influenced by climate change. We aimed to determine the responses of some local tomato landraces from Mediterranean countries pre-selected as drought tolerant according to previous screening tests at an early stage. Three irrigation approaches were applied: Full irrigation [...] Read more.
Vegetable production worldwide is heavily influenced by climate change. We aimed to determine the responses of some local tomato landraces from Mediterranean countries pre-selected as drought tolerant according to previous screening tests at an early stage. Three irrigation approaches were applied: Full irrigation (Ir-Full), Deficit 1 (Ir-Def1), and Deficit 2 (Ir-Def2) irrigation. Drought stress was simulated via controlled irrigation deficit, reducing the amount of water applied by 35% and 50% in Ir-Def1 and Ir-Def2, respectively. Plant growth, yield, some fruit physicochemical properties, water consumption, and water use efficiency were measured. The results revealed that water deficit adversely affected total and marketable yields, plant growth, and biomass while enhancing some specific quality parameters. Landrace responses varied across different levels of water deficit. Among the tested tomato landraces, ‘Valldemossa’, ‘Chondrokats’, and ‘TR62367’ exhibited strong yield performance, with up to 4 kg m−2 under water-limited conditions, whereas ‘Cherry-INRAE 1’, ‘Cherry-INRAE 3’, and ‘Cherry-INRAE 4’ excelled in fruit quality attributes, reaching up to 9.3% Brix, 14.07 mg 100 g−1 vitamin C, 7.77 mg GAE 100 g−1 total phenols, and 75.74 µmol TE g−1 antioxidant activity. The amount of water could be reduced by 35% without compromising yield or quality in the most drought-tolerant landraces. Full article
Show Figures

Figure 1

21 pages, 1873 KiB  
Article
Application Methods of Zinc Sulphate Increased Safflower Seed Yield and Quality under End-Season Drought Stress
by Reza Ahmadi, Mohammad Mahmoudi, Farid Shekari, Kamran Afsahi, Kiana Shekari, Jalal Saba and Andrea Mastinu
Horticulturae 2024, 10(9), 963; https://doi.org/10.3390/horticulturae10090963 - 10 Sep 2024
Cited by 1 | Viewed by 1417
Abstract
Zinc deficiency is one of the most widespread nutritional problems, affecting nearly one-third of the world population. In addition, it is known that zinc deficiency not only reduces crop yield but also its quality. The effect of different methods of zinc application on [...] Read more.
Zinc deficiency is one of the most widespread nutritional problems, affecting nearly one-third of the world population. In addition, it is known that zinc deficiency not only reduces crop yield but also its quality. The effect of different methods of zinc application on the growth, yield, and quality of safflower seeds under regular irrigation and interruption of irrigation from flowering to harvest (82 and 80 DAS in the first and second years, respectively) was evaluated. Zinc sulfate was applied in both soil and foliar methods. The zinc sulfate treatments include no zinc sulfate, soil application of 20, 40, and 60 kg ha−1 at the planting stage; spraying 2.5, 5, and 7.5 g L−1 in the rosette stage; and spraying 2.5, 5, and 7.5 g L−1 in the flowering stage. The end-season drought caused a decrease in the chlorophyll index, leaf area index, relative water content, plant height, yield components, biological yield, seed yield, harvest index, seed oil content, oil harvest index, and seed element content compared to regular irrigation. The decrease in yield occurred with a decrease in the capitol number and diameter, seed number per capitol, and 1000-seed weight. The severity of the damage of the end-season drought stress in the second year was higher than in the first year due to the higher temperatures and the decrease in the rainfall. In both years, the application of zinc sulfate in different ways had an increasing effect on the studied traits in both normal and stress conditions. The application of zinc sulfate reduced the negative effects of unfavorable environmental conditions and improved the yield and nitrogen, phosphorus, potassium, zinc, and iron element content in the seed. In both application methods of zinc sulfate, the increment in the zinc sulfate concentration decreased the seed phosphorus content. However, the phosphorous content was more than that of the treatment of non-zinc application. The application of zinc increased the biological, seed, and oil yield of the treated plants, but the seed and oil yield were more affected. This effect was shown in the seed and oil harvest index increment. Under regular irrigation, higher concentrations of zinc sulfate enhanced plant performance, but under stress conditions, medium and lower concentrations were more effective. The highest 1000-seed weight and potassium and zinc content were obtained by spraying zinc sulfate at 5 g L−1 in the flowering stage under normal irrigation conditions. A comparison of the two methods of applying zinc sulfate showed that foliar spraying was more effective than soil application in improving the seed yield. The soil application is more effective on biological yield than seed yield. Full article
Show Figures

Figure 1

10 pages, 343 KiB  
Article
Aloe vera Cuticle: A Promising Organic Water-Retaining Agent for Agricultural Use
by Wilmer E. Luligo-Montealegre, Santiago Prado-Alzate, Alfredo Ayala-Aponte, Diego F. Tirado and Liliana Serna-Cock
Horticulturae 2024, 10(8), 797; https://doi.org/10.3390/horticulturae10080797 - 27 Jul 2024
Cited by 1 | Viewed by 1423
Abstract
Water is an important resource for both human and environmental survival. However, due to current human practices, we are facing a serious crisis in accessing water. Thus, solutions must be explored to optimize the use of this resource. In the search for an [...] Read more.
Water is an important resource for both human and environmental survival. However, due to current human practices, we are facing a serious crisis in accessing water. Thus, solutions must be explored to optimize the use of this resource. In the search for an organic water-retaining agent for agricultural use, the techno-functional properties of Aloe vera (Aloe barbadensis Miller) cuticle, an agro-industrial residue generated after gel extraction, were evaluated. The residue was dried and ground. The effects of particle size (180 µm and 250 µm), temperature (10 °C, 20 °C, 30 °C, and 40 °C), and pH (4.5, 6.0, and 7.0) on the solubility and water-holding capacity (WHC) of the obtained product (i.e., hydrogel) were then evaluated. The treatment with the highest WHC was selected and compared with the WHC of a commercial synthetic polyacrylamide gel widely used in agriculture. The effects of KNO3 and Ca(NO3)2 at different concentrations (10 g L−1, 20 g L−1, 30 g L−1, and 40 g L−1) on the WHC of the gels were assessed. Particle size, temperature, and pH interactions had statistically significant effects on solubility, while the WHC was affected by particle size × temperature and pH × temperature interactions. The highest product solubility (75%) was obtained at the smallest particle size (i.e., 180 µm), pH 4.5, and 20 °C. Meanwhile, the highest WHC (18 g g−1) was obtained at the largest particle size (i.e., 250 µm), pH 6.0, and 20 °C. This optimized gel kept its WHC across both salts and their concentrations. In contrast, the commercial gel significantly decreased its WHC with salt concentration. The product elaborated with A. vera cuticle could have bioeconomic potential as a water-retention agent for agricultural use, with the advantage that it is not affected by the addition of salts used for plant fertilization. Full article
Show Figures

Figure 1

12 pages, 814 KiB  
Article
Physiological and Growth Responses of W. Murcott Tangor Grafted on Four Rootstocks under Water Restriction
by Sophia Tobar, Pilar M. Gil, Bruce Schaffer, Andrés R. Schwember, Ricardo Cautín and Johanna Mártiz
Horticulturae 2024, 10(4), 352; https://doi.org/10.3390/horticulturae10040352 - 2 Apr 2024
Cited by 3 | Viewed by 1403
Abstract
Citrus orchards in semi-arid regions are increasingly exposed to drought conditions due to climate change. This study compared the physiological and growth responses of ‘W. Murcott’ tangor (WM) grafted onto Citrus macrophylla (M), Swingle citrumelo (SC), C-35 citrange (C35), or bitter citrandarin (C22) [...] Read more.
Citrus orchards in semi-arid regions are increasingly exposed to drought conditions due to climate change. This study compared the physiological and growth responses of ‘W. Murcott’ tangor (WM) grafted onto Citrus macrophylla (M), Swingle citrumelo (SC), C-35 citrange (C35), or bitter citrandarin (C22) rootstock subjected to two irrigation treatments: daily irrigation to replace 100% of the water lost daily by evapotranspiration (ET; control treatment) or daily irrigation to replace 75% of the water lost daily by ET (water deficit treatment). For trees in each treatment, leaf gas exchange, relative chlorophyll content, chlorophyll fluorescence, midday stem water potential, trunk cross-sectional area, and shoot length were measured 46 days after treatments were initiated. The results showed that WM on SC or C22 rootstock exhibited isohydric behavior, where decreased stomatal conductance limited transpiration in the water deficit treatment. WM on M rootstock exhibited an anisohydric response in the water deficit treatment, where there was no stomatal control of water loss by transpiration. Among the rootstocks tested for WM, the most tolerant to soil water deficit was SC, whereas trees on M rootstock were the most negatively affected by soil water deficit. Full article
Show Figures

Figure 1

23 pages, 3942 KiB  
Article
Effect of Deficit Irrigation and Intercrop Competition on Productivity, Water Use Efficiency and Oil Quality of Chia in Semi-Arid Regions
by Chowdasandra Byregowda Harisha, Jagadish Rane, Gopikunte Ramegowda Halagunde Gowda, Sangram Bhanudas Chavan, Amresh Chaudhary, Arvind Kumar Verma, Yathendranaik Ravi, Honnappa Asangi, Hanamant Mudukappa Halli, Karnar Manjanna Boraiah, Patil Siddanagouda Basavaraj, Paritosh Kumar and Kotha Sammi Reddy
Horticulturae 2024, 10(1), 101; https://doi.org/10.3390/horticulturae10010101 - 20 Jan 2024
Cited by 3 | Viewed by 2041
Abstract
Intercropping offers greater scope to introduce new crops. Cultivation of crops with diverse root architecture and different durations enhances the productivity of scarce resources like land and water. This study aimed to determine the effect of intercrop competition and irrigation regimes on yield, [...] Read more.
Intercropping offers greater scope to introduce new crops. Cultivation of crops with diverse root architecture and different durations enhances the productivity of scarce resources like land and water. This study aimed to determine the effect of intercrop competition and irrigation regimes on yield, competition, land usage, irrigation water use efficiency (IWUE), and fatty acids of chia. The field experiment was conducted in semi-arid India during 2020–2022 with full (I100) and deficit irrigation (I50) and six intercrops. Results demonstrated that chia + fenugreek intercropping in I50 improved the crops’ competitiveness, land equivalent ratio (LER) (1.77), land use efficiency (142.5%), and the IWUE of chia (23.2%). Notably, a chia + radish/spinach system in I50 reduced the seed yield (42.6–45.0%) of chia over I100 monocropping. A chia + fenugreek system in I50 resulted in a higher seed yield (196.2 kg ha−1) than chia monocropping in I100. Further, chia + fenugreek intercropping resulted in higher omega-3 content (56.68%) under I100. Therefore, a chia + fenugreek system under I100 may be suggested over monocropping for better yield and oil quality. However, during water scarcity situations, growers can adopt a chia + fenugreek system under I50 which can give a similar chia equivalent yield and a higher LER and IWUE compared to chia monocropping under I100. Full article
Show Figures

Figure 1

14 pages, 3748 KiB  
Article
Physiological and Productivity Responses in Two Chili Pepper Morphotypes (Capsicum annuum L.) under Different Soil Moisture Contents
by Aurelio Pedroza-Sandoval, José Rafael Minjares-Fuentes, Ricardo Trejo-Calzada and Isaac Gramillo-Avila
Horticulturae 2024, 10(1), 92; https://doi.org/10.3390/horticulturae10010092 - 18 Jan 2024
Cited by 2 | Viewed by 2041
Abstract
The aim of this study was to explore some physiological and productivity responses of two chili pepper morphotypes (Capsicum annum L.) exposed to different soil moisture contents. A randomized block design in a split-plot arrangement with four replicates was used. The large [...] Read more.
The aim of this study was to explore some physiological and productivity responses of two chili pepper morphotypes (Capsicum annum L.) exposed to different soil moisture contents. A randomized block design in a split-plot arrangement with four replicates was used. The large plots (32 m long and 3.2 m width) were 25% ± 2 as the optimum soil moisture content (OSMC), and 20% ± 2 as the suboptimum soil moisture content (SSMC); the small plots (16 m long and 3.2 m width) were two chili pepper morphotypes: Jalapeño and Chilaca, respectively. Jalapeño plants showed more stability in relative water content (RWC), photosynthetic activity (µmol CO2/m2/s), and a relatively low transpiration (mmol H2O/m2/s) and stomatal conductance (µmol H2O/m2/s); therefore, it had a higher number of flowers per plant and number of fruits per plant, consequently recording a high fruit production of 3.94 and 2.99 kg/m2 in OSMC and SSMC, respectively. In contrast, the Chilaca chili showed low stability in water relative content (WRC), photosynthesis, and transpiration, going from OSMC to SSMC, as well as showed a lower yield in SSMC; however, all of that was compensated by its size and weight of the fruit per plant, with a yield of 4.95 kg/m2 in OSMC. Therefore, the Jalapeño chili pepper could be an option when the irrigation water is limited, and the Chilaca chili pepper when this resource is not limited. Full article
Show Figures

Figure 1

Back to TopTop