Microbial Interaction with Horticulture Plant Growth and Development

A special issue of Horticulturae (ISSN 2311-7524).

Deadline for manuscript submissions: closed (27 September 2024) | Viewed by 5218

Special Issue Editors

Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Interests: organic agriculture; crops; biostimulants; biotechnology; horticulture; forage crops; soil science; sustainable agriculture
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Interests: organic agriculture; crops; biostimulants; horticulture; forage crops; soil science; sustainable agriculture
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Interests: vegetables and environment; microorganisms and vegetables; low-temperature response; low-light response; leaf fertilizer; increasing production technology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plant microbial interactions can be done through various numbers of direct and indirect mechanisms such as nutrient transfer (stemming from vitamin or siderophore production; enzymatic decomposition of litter in soil; atmospheric nitrogen fixation; conversion of inorganic minerals to soluble components, especially phosphorous), direct stimulation of growth via phytohormones such as indole acetic acid and ethylene, mitigation of salt stress, and antagonism toward pathogenic microorganisms. Microbial diversity has been directly linked to above-ground diversity in a number of agricultural, horticultural, and natural settings. Diverse components released by different parts of the root system create a wonderful and unique environment in the surrounding soil, which is known as the rhizosphere. These components are termed as root exudates and belong to three main groups: high-molecular weight, low-molecular weight, and volatile organic compounds. The types of microorganisms within a rhizosphere include fungi, bacteria, algae, and actinomycetes. Microorganisms and their products also influence the roots in a variety of negative, positive, and neutral ways. Interestingly, microbial density was proved to non-linearly influence plant production, while increasing microbial density has been shown to boost plant biomass. Microorganisms take an active role in the growth of specific species using hormone production, as indoleacetic acid, or indole-3-acetic acid, is a plant hormone produced in the apex or buds and new leaves of young plants. In addition to decreasing stress effects, plant–microbial interactions affect the plant disease state or diversity of soil pathogens. Free-living microbes including filamentous fungi of the genus Trichoderma and a variety of plant growth-promoting rhizobacteria (PGPR) are able to suppress soil-borne plant pathogens and stimulate plant growth by various direct or indirect mechanisms, such as production of mycoparasitism, phytohormones, and competence with plant pathogens; decomposition; and mineralization of organic matter and increasing the bioavailability of mineral nutrients such as iron and phosphorus. This Special Issue focuses on the functions and roles of different types of microbes and their interactions with plants through a number of direct or indirect mechanisms, as well as how plant–microbe interactions act on plant growth, what mechanisms they use to survive under stressful environmental conditions, and how the interactions and abiotic parameters can interfere with the success of microbial inoculation in plants, acting as a basis for studies on plant–microorganism interactions. When the underlying mechanisms of plant–microbe interactions are properly investigated, modulation, manipulation, and inoculation strategies can be developed to realize crop growth, increased yield, and pathogen control.

Dr. Wenli Sun
Dr. Mohamad Hesam Shahrajabian
Prof. Dr. Yansu Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Horticulturae is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microbial–horticultural plant interactions
  • mutual assistance and competition among rhizosphere microorganisms
  • nutrient exchange
  • plant hormone
  • root exudates
  • soil microenvironment
  • stress inhibition
  • antagonism
  • growth-promoting microorganism
  • rhizosphere microbial action
  • fungal community
  • actinomyces
  • bacterial community
  • organic cultivation
  • green agriculture
  • medicinal plants, chinese medicines and natural products

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 3482 KiB  
Article
Improving Lettuce Tolerance to Cadmium Stress: Insights from Raw vs. Cystamine-Modified Biochar
by Rongqi Chen, Xi Duan, Ruoxuan Xu and Tao Zhao
Horticulturae 2024, 10(12), 1323; https://doi.org/10.3390/horticulturae10121323 - 11 Dec 2024
Viewed by 240
Abstract
Understanding the interactions among biochar, plants, soils, and microbial communities is essential for developing effective and eco-friendly soil remediation strategies. This study investigates the role of cystamine-modified biochar (Cys-BC) in alleviating cadmium (Cd) toxicity in lettuce, comparing its effects to those of raw [...] Read more.
Understanding the interactions among biochar, plants, soils, and microbial communities is essential for developing effective and eco-friendly soil remediation strategies. This study investigates the role of cystamine-modified biochar (Cys-BC) in alleviating cadmium (Cd) toxicity in lettuce, comparing its effects to those of raw biochar. Lettuce plants were exposed to Cd stress (1–5 mg kg−1), and the effects of Cys-BC were assessed by measuring plant biomass, photosynthetic efficiency, antioxidant activity, Cd bioavailability, and soil microbial diversity. Cys-BC significantly enhanced plant biomass, with increases in above-ground growth (40.54–44.95%) and root biomass (37.54–47.44%) compared to Cd-stressed controls. Photosynthetic parameters improved by up to 91.02% for chlorophyll-a content and 37.93% for the net photosynthetic rate. Cys-BC mitigated oxidative stress, increasing antioxidant activities by 73.83% to 99.39%. Additionally, Cys-BC reduced available Cd levels in the soil, primarily through enhanced cation exchange rather than changes in pH. Plant responses to Cd stress included increased glutathione reductase activity and elevated cysteine levels, which further contributed to Cd passivation. Microbial diversity in the soil increased, particularly among sulfur- and nitrogen-cycling bacteria such as Deltaproteobacteria and Nitrospira, suggesting their role in mitigating Cd stress. These findings highlight the potential of Cys-BC as an effective agent for the remediation of Cd-contaminated soils. Full article
(This article belongs to the Special Issue Microbial Interaction with Horticulture Plant Growth and Development)
Show Figures

Figure 1

15 pages, 6204 KiB  
Article
Identification of Laccase Genes in Athelia bombacina and Their Interactions with the Host
by Xiaonan Sun, Weiwei Yan, Xinnan Zhang, Wenhui Wang and Xiaohui Jia
Horticulturae 2024, 10(8), 842; https://doi.org/10.3390/horticulturae10080842 - 9 Aug 2024
Viewed by 941
Abstract
Laccase (LAC), a copper-containing polyphenol oxidase, is an important pathogenic factor of pathogenic fungi, and has been identified as an important virulence factor in numerous pathogenic fungi. LAC is encoded by a gene family and belongs to the class of multicopper oxidases. The [...] Read more.
Laccase (LAC), a copper-containing polyphenol oxidase, is an important pathogenic factor of pathogenic fungi, and has been identified as an important virulence factor in numerous pathogenic fungi. LAC is encoded by a gene family and belongs to the class of multicopper oxidases. The study aimed to identify the LAC genes in Athelia bombacina (Link) Pers, and their interactions with the host. The expression levels of the LAC genes were quantified using RT-qPCR. The LAC activity, level of malondialdehyde (MDA) and activities of protective enzymes in ‘Huangguan’ pears during the interaction were measured. The AbLac4 gene deletion mutant strain was constructed. Six LAC genes were identified in A. bombacina, distributed across three chromosomes. Interspecies collinearity analysis suggested that LAC genes could serve as crucial pathogenic factors in A. bombacina. The LAC gene family can be classified into three distinct subgroups. Among the subgroups, variations were observed in their characteristic sequences and conserved motifs. However, the LAC genes within the same subgroup exhibited a high degree of conservation. The genes showed diverse expression profiles, with their promoters harboring multiple stress-responsive elements. Signal peptide prediction showed that all LAC proteins, with the exception of the AbLac3 protein, possessed signal peptides, indicating that they are secretory proteins. The subcellular localization analysis showed that all LAC proteins may be localized extracellularly. RT-qPCR revealed differential expression patterns among LAC genes; specifically, AbLac1 and AbLac4 exhibited distinct expression dynamics during the infection process. The LAC activity first increased and then decreased, with the highest increase rate occurring in the early stage of culture. The MDA content and catalase (CAT) activity at the inoculated site were found to be significantly higher than the uninoculated control. In addition, the deletion of AbLac4 gene reduced the growth rate and pathogenic ability of A. bombacina. This investigation found that AbLac1 and AbLac4 may play pivotal roles in mediating host interactions, and the fruit may combat pathogen infection through increasing the activities of CAT, phenylalanine ammonia lyase and peroxidase. This study provides valuable new insights into the pathogenic mechanisms of A. bombacina, significantly contributing to the field. Full article
(This article belongs to the Special Issue Microbial Interaction with Horticulture Plant Growth and Development)
Show Figures

Figure 1

12 pages, 1065 KiB  
Article
Potential Role of the Yeast Papiliotrema terrestris Strain PT22AV in the Management of the Root-Knot Nematode Meloidogyne incognita
by Trifone D’Addabbo, Silvia Landi, Davide Palmieri, Lea Piscitelli, Elena Caprio, Vincenzo Esposito and Giada d’Errico
Horticulturae 2024, 10(5), 472; https://doi.org/10.3390/horticulturae10050472 - 5 May 2024
Viewed by 1274
Abstract
The nematicidal potential of the yeast Papiliotrema terrestris strain PT22AV (YSY) was investigated against the root nematode (RKN) Meloidogyne incognita in in vitro bioassays on infective juveniles (J2) and experiments on tomatoes in pot and greenhouse conditions. The J2 nematodes were exposed to [...] Read more.
The nematicidal potential of the yeast Papiliotrema terrestris strain PT22AV (YSY) was investigated against the root nematode (RKN) Meloidogyne incognita in in vitro bioassays on infective juveniles (J2) and experiments on tomatoes in pot and greenhouse conditions. The J2 nematodes were exposed to YSY solutions for 19 days, using abamectin (ABA), fosthiazate (FOS) and distilled water as controls. In the experiments on potted and greenhouse tomatoes, 0.5 and 1 kg ha−1 doses of YSY were tested in comparison to ABA, biocontrol agents Purpureocillium lilacinus strain 251 (PUL) and Bacillus firmus strain 1-1582 (BAF), a plant biostimulant/fertilizer (ERG) and the nematicide Fluopyram (FLU). J2’s viability was affected by YSL after 7 days, decreasing to zero on the 15th exposure day, while ABA and FOS resulted in 83 and 100% J2 mortality within 24 h. Only the 1.0 kg ha−1 dose of YSY was able to significantly reduce the final nematode population in soil and gall formation on tomato roots, without significant differences from PUL and BAF. All treatments in comparison also resulted in a significant increase in tomato growth and crop yield, except for 0.5 kg ha−1 of YSY. Data indicated that YSY could represent an additional tool for organic and integrated RKN management. Full article
(This article belongs to the Special Issue Microbial Interaction with Horticulture Plant Growth and Development)
Show Figures

Figure 1

13 pages, 2130 KiB  
Article
Response of Microbial Recovery Rate to Straw Return after Calcium Cyanamide Soil Disinfection
by Xuewen Xie, Lida Chen, Yanxia Shi, Ali Chai, Tengfei Fan, Baoju Li and Lei Li
Horticulturae 2024, 10(1), 2; https://doi.org/10.3390/horticulturae10010002 - 19 Dec 2023
Viewed by 1287
Abstract
At present, returning vegetable straw in situ is an effective measure to solve environmental pollution and improve soil properties. However, the direct return of straw to the field can reduce the release rate of soil organic matter and cause serious soilborne diseases. The [...] Read more.
At present, returning vegetable straw in situ is an effective measure to solve environmental pollution and improve soil properties. However, the direct return of straw to the field can reduce the release rate of soil organic matter and cause serious soilborne diseases. The combined application of calcium cyanamide (CaCN2) and straw can solve this problem. The objective of this study was to determine the effect of CaCN2 combined with pepper straw return on cucumber yield, soil physicochemical properties, and soil microbial communities during 2020 to 2021 in Shandong Province, China. The treatments were designed as follows: (1) calcium cyanamide soil disinfection, CC; (2) fresh pepper straw return, LJ; (3) fresh pepper straw return combined with calcium cyanamide disinfection, LJ+CC; and (4) natural soil without straw return treatment, CK. Compared with CK, the LJ+CC treatment significantly improved cucumber production by 20%. The cultivable microbial community in the soil was temporarily inhibited during soil fumigation treatment, and the cultivable bacterial and actinomycete communities in the soil return to their initial levels after the film was removed (harvest period). The numbers of culturable bacteria and actinomycetes in the soil in the LJ+CC treatment were 4.68 × 107 CFU/g and 5.17 × 107 CFU/g, respectively, higher than those in the soil in the CC treatment. The contents of TN and OM in the LJ+CC treatment increased by 13.1% and 13.5%, respectively, compared with that in LJ. Therefore, the LJ+CC treatment enhanced soil fertility and cucumber yields. CaCN2 can promote straw decomposition and straw can promote soil microbial recovery, and their combined application is considered a feasible and sustainable technique for utilizing vegetable residues in the greenhouse. The combination of returning pepper straw to the field and calcium cyanamide technology achieves a win-win situation of resource circulation and economic circulation by converting agricultural waste into fertilizer before being put into production. Based on this, it is recommended that the straw returning technology receives strong policy support, stimulates researchers to explore the feasibility of different vegetable straw returning to the field, promotes the implementation of this technology achievement, and leverages the environmental benefits of the application of straw returning technology. Full article
(This article belongs to the Special Issue Microbial Interaction with Horticulture Plant Growth and Development)
Show Figures

Graphical abstract

Review

Jump to: Research

28 pages, 2618 KiB  
Review
The Importance of Mycorrhizal Fungi and Their Associated Bacteria in Promoting Crops’ Performance: An Applicative Perspective
by Miriana Bortolot, Beatrice Buffoni, Sonia Mazzarino, Gregory Hoff, Elena Martino, Valentina Fiorilli and Alessandra Salvioli Di Fossalunga
Horticulturae 2024, 10(12), 1326; https://doi.org/10.3390/horticulturae10121326 - 11 Dec 2024
Viewed by 334
Abstract
Agricultural systems are particularly impacted by global climate change (CC), responsible for the introduction of multiple environmental stressors negatively affecting plant growth. Soil microbial communities are crucial in agricultural practices, influencing crop performance and soil health. Human activities and CC threaten soil microbial [...] Read more.
Agricultural systems are particularly impacted by global climate change (CC), responsible for the introduction of multiple environmental stressors negatively affecting plant growth. Soil microbial communities are crucial in agricultural practices, influencing crop performance and soil health. Human activities and CC threaten soil microbial biodiversity, leading to soil quality degradation and decreasing plant health and productivity. Among plant-beneficial microorganisms, mycorrhizal fungi are widespread in terrestrial ecosystems, including agroecosystems, and they play a key role by enhancing plants’ fitness and resilience to both abiotic and biotic stresses. Therefore, exploring the role of mycorrhizal symbiosis in sustainable agriculture has become increasingly critical. Moreover, the application of mycorrhizal bioinoculants could reduce dependence on inorganic fertilizers, enhance crop yield, and support plants in overcoming environmental stresses. This review, after briefly introducing taxonomy, morphology and mechanisms supporting the symbiosis establishment, reports the roles of mycorrhizal fungi and their associated bacteria in improving plant nutrition and mitigating CC-induced abiotic stresses such as drought and salinity, also giving specific examples. The focus is on arbuscular mycorrhizal fungi (AMF), but ericoid mycorrhizal (ErM) fungi are also considered as promising microorganisms for a sustainable agricultural model. New emerging concepts are illustrated, such as the role of AMF hyphosphere in acting as a preferential niche to host plant growth-promoting bacteria and the potential of ErM fungi to improve plant performance on Ericaceae plants but also on non-host plants, behaving as endophytes. Finally, the potential and limitations of mycorrhizal-based bioinoculants are discussed as possible alternatives to chemical-based products. To this aim, possible ways to overcome problems and limitations to their use are discussed such as proper formulations, the systematic check of AMF propagule viability and the application of suitable agronomical practices in the field. Full article
(This article belongs to the Special Issue Microbial Interaction with Horticulture Plant Growth and Development)
Show Figures

Figure 1

Back to TopTop