energies-logo

Journal Browser

Journal Browser

Carbon Capture, Energy Consumption and Storage Technologies in Energy Systems for Green Energy Transition

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "B3: Carbon Emission and Utilization".

Deadline for manuscript submissions: 25 October 2025 | Viewed by 697

Special Issue Editors


E-Mail Website1 Website2
Guest Editor
Departamento de Ingeniería Eléctrica, Escuela Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Sevilla, Spain
Interests: power systems; facility maintenance; smart grids; sustainability; cities; greenhouse gas emissions
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Government, College of Law, Government and International Studies (COLGIS), Universiti Utara Malaysia, Sintok, Malaysia
Interests: energy consumption; urban metabolism; sustainability; cities; greenhouse gas emissions

E-Mail Website1 Website2
Guest Editor
Departamento de Ingeniería Eléctrica, Escuela Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Sevilla, Spain
Interests: power systems; facility maintenance; smart grids; sustainability; cities; greenhouse gas emissions

Special Issue Information

Dear Colleagues,

The increase in energy-related carbon emissions has led to an alarming situation, in which the world must reduce its carbon emissions. This has contributed to the urgency of developing options for mitigation through advanced modelling tools, methodologies, and applications and technologies for carbon capture and storage in energy systems. At the same time, the growing use of carbon capture and storage technologies has played an important role in tackling carbon emissions from large point sources, which benefits green energy transitions.

This Special Issue aims to present and disseminate the most recent advances related to the theory, design, modelling, application, technology development, and implementation of all types of carbon capture and storage in energy systems.

Topics of interest for publication include, but are not limited to, the following:

  • All aspects of induction carbon capture, such as conceptual approaches, methodologies and modelling tools, utilisation, and technology development in energy systems;
  • Energy consumption and transitions;
  • Carbon capture and storage technologies in energy systems;
  • Carbon storage and capture capacity in energy systems;
  • Novel applications of carbon capture, energy utilisation, and technology for green energy transitions;
  • The development of multiphase carbon capture and storage and reductions in the energy consumption associated with these processes in energy systems;

Dr. Pedro J. Zarco-Periñán
Dr. Sharif Shofirun Bin Sharif Ali
Dr. Javier Zarco-Soto
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • carbon capture
  • storage
  • energy consumption
  • applications
  • technologies
  • modeling
  • efficiency
  • energy transitions

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 611 KiB  
Article
Thermodynamic and Economic Assessment of Steam Generation with Heavy Fuel Oil and Electric Boilers in a Brazilian Thermoelectric Power Plant
by Haylemar de Nazaret Cardenas-Rodriguez, Yohan Ali Diaz Mendez, Angel Edecio Malaguera Mora, Robson Bauwelz Gonzatti, Rosa Martins, Tiago Diogenes Batista da Silva, Luzivan Da Cruz Moura, Wagner Anderson Souza Figueiredo, Danilo Deivison Santos Silva, Anderson Helmiton Alves de Lima, Arthur José da Silva, André Leon Dias, Erik Leandro Bonaldi, Luiz Eduardo Borges-da-Silva and Frederico De Oliveira Assuncao
Energies 2025, 18(10), 2565; https://doi.org/10.3390/en18102565 - 15 May 2025
Viewed by 138
Abstract
Heavy fuel oil (HFO) is a widely used fuel in compression ignition engines, primarily in Brazilian thermoelectric plants, mainly due to its availability, low cost, and low operational expenses. However, heavy fuel oil is not compatible with most diesel engines and combustion systems [...] Read more.
Heavy fuel oil (HFO) is a widely used fuel in compression ignition engines, primarily in Brazilian thermoelectric plants, mainly due to its availability, low cost, and low operational expenses. However, heavy fuel oil is not compatible with most diesel engines and combustion systems in use and must be treated to maintain combustion process efficiency. The high viscosity of heavy fuel oil must be reduced before being introduced into the engine. To achieve this, appropriate heating devices are added to the fuel lines, with steam being the primary working fluid in these devices. Steam-generating boilers that burn fossil fuels, including HFO itself, are the most viable option from an economic standpoint and in terms of utilizing locally available fuels for this function. However, the need to mitigate the effects of environmental pollution has encouraged the adoption of other types of boilers, such as electric ones. In this work, a case study of a combustion steam generator installed in a Brazilian thermoelectric plant is developed. This study involves the thermodynamic and combustion modeling of the steam generator through the balancing of the respective thermodynamic and combustion equations. The models and the proposed chemical formula of HFO were validated, and through simulations using real data collected during the boiler’s operation throughout 2024, it was also possible to estimate the carbon dioxide emissions produced. Additionally, a hypothetical scenario was simulated in which the combustion boiler currently installed in the plant is replaced by two electric boilers. A simple economic analysis demonstrated that such a replacement would result in a total steam production cost of only 25% of the amount spent on the current combustion boiler, in addition to reducing CO2 emissions to the atmosphere by 62.55 tons. Full article
Show Figures

Figure 1

21 pages, 2152 KiB  
Article
Scenarios of Carbon Capture and Storage Importance in the Process of Energy System Transformation in Poland
by Aurelia Rybak and Jarosław Joostberens
Energies 2025, 18(9), 2278; https://doi.org/10.3390/en18092278 - 29 Apr 2025
Viewed by 195
Abstract
One of the most important issues in the coming years will be the decarbonisation of the European Union member states’ energy systems. The majority of the abstract requires modification. I propose that the first sentence of the abstract in the manuscript should better [...] Read more.
One of the most important issues in the coming years will be the decarbonisation of the European Union member states’ energy systems. The majority of the abstract requires modification. I propose that the first sentence of the abstract in the manuscript should better emphasize the formulation of the problem. The remaining part and any corrections were made by the author. Scenarios of the importance of CCS in the process of transformation of energy systems in Poland. One of the most important issues in the coming years will be the transformation of the energy systems of the European Union’s member states, which will require the development of appropriate technological solutions. The research presented here analyses the importance of CCS in energy transformation. This article proposes adapting the energy transformation method to the structure of the energy mix and conditions prevailing in a specific country. Poland was adopted as an example for analysis due to its exceptionally complicated situation, taking into account the structure of energy production. For this purpose, an expert opinion survey was conducted. Both measurable variables, such as the volume of CO2 emissions and EU ETS prices, and a qualitative variable, i.e., the impact of the political environment on the development of CCS, were introduced to the constructed model. The model allowed us to construct three scenarios describing alternative visions for the future development of CCS: optimistic, pessimistic, and neutral, taking into account different conditions in which CCS can develop. The use of fuzzy sets allowed us to eliminate the most serious drawback of planning scenarios based on expert knowledge, which is the subjectivity of their judgments. This research showed that stable conditions of the political environment and predictable legal regulations will be crucial for the application of CCS in the Polish energy sector. The prepared scenarios will enable a quick response and accurate decisions under various conditions of the turbulent environment. This will facilitate the preparation of energy strategies. The scenarios indicate what combinations of variables, under given environmental conditions, of CCS will be of great importance in the energy transformation, and when it may give way to other technologies. In addition, the scenarios, and especially their visualisation, are extremely valuable for stakeholders, because they will allow them to observe the potential development of the situation under known conditions of the political environment, prices, and CO2 emissions. They enable understanding the dependence of the importance of CCS in the changing environment. They also enable the detection of critical points for the development of CCS, which, as a result of recent geopolitical events, may be of key importance in the near future for ensuring the energy and military security of Poland and the EU. Full article
Show Figures

Figure 1

Back to TopTop