Special Issue "The Molecular and Cellular Basis for Rheumatoid Arthritis"

A special issue of Cells (ISSN 2073-4409).

Deadline for manuscript submissions: 31 December 2019.

Special Issue Editor

Guest Editor
Assoc. Prof. Koichiro Ohmura Website E-Mail
Department of Rheumatology and Clinical Immunology,Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
Interests: rheumatology, clinical immunology, genetics, autoantibody

Special Issue Information

Dear Colleagues,

Understanding of the pathogenesis of rheumatoid arthritis (RA) has been accumulated over the last few decades. Various inflammatory cytokines and cytokine pathways have been revealed to be involved and many molecular target therapies are already successfully provided to patients. Rheumatoid factor and anti-citrullinated protein antibody production are the key characteristics of RA and the association with chronic certain bacterial infections has been highlighted these days, which might lead to a new approach to treat RA or to prevent RA development.

In this Special Issue, we would like to overview the current knowledge of the molecular and cellular mechanisms in RA pathogenesis, especially focusing on omics analyses including genomics, epigenomics, transcriptomics, proteomics, metabolomics and the microbiome, as well as on cellular and cytokine networks related to RA. Furthermore, we would like to refer to the pathogenesis of sero-negative RA, which is not as well-understood as sero-positive RA.

We hope this Special Issue becomes a good textbook of the understanding of the molecular and cellular mechanisms of RA development, and will provide novel insight to readers.

Assoc. Prof. Koichiro Ohmura
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Omics analyses of RA
  • Cytokines related to RA
  • Autoantibodies of RA
  • Pathogenesis of sero-positive and -negative RA
  • Microbiome of RA
  • Characteristics of different animal models of RA

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
The Abnormal CD4+T Lymphocyte Subset Distribution and Vbeta Repertoire in New-onset Rheumatoid Arthritis Can Be Modulated by Methotrexate Treament
Cells 2019, 8(8), 871; https://doi.org/10.3390/cells8080871 - 10 Aug 2019
Abstract
Patients with long-term, treated, rheumatoid arthritis (RA) show abnormalities in their circulating CD4+ T-lymphocytes, but whether this occurs in recently diagnosed naïve patients to disease-modifying drugs (DMARDs) is under discussion. These patients show heterogeneous clinical response to methotrexate (MTX) treatment. We have examined [...] Read more.
Patients with long-term, treated, rheumatoid arthritis (RA) show abnormalities in their circulating CD4+ T-lymphocytes, but whether this occurs in recently diagnosed naïve patients to disease-modifying drugs (DMARDs) is under discussion. These patients show heterogeneous clinical response to methotrexate (MTX) treatment. We have examined the count of circulating CD4+ T-lymphocytes, and their naïve (TN), central memory (TCM), effector memory (TEM) and effector (TE) subsets, CD28 expression and Vβ TCR repertoire distribution by polychromatic flow cytometry in a population of 68 DMARD-naïve recently diagnosed RA patients, before and after 3 and 6 months of MTX treatment. At pre-treatment baseline, patients showed an expansion of the counts of CD4+ TN, TEM, TE and TCM lymphocyte subsets, and of total CD4+CD28− cells and of the TE subset with a different pattern of numbers in MTX responder and non-responders. The expansion of CD4+TEM lymphocytes showed a predictive value of MTX non-response. MTX treatment was associated to different modifications in the counts of the CD4+ subsets and of the Vβ TCR repertoire family distribution and in the level of CD28 expression in responders and non-responders. In conclusion, the disturbance of CD4+ lymphocytes is already found in DMARD-naïve RA patients with different patterns of alterations in MTX responders and non-responders. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis for Rheumatoid Arthritis)
Show Figures

Figure 1

Open AccessArticle
Long Non-Coding RNAs Target Pathogenetically Relevant Genes and Pathways in Rheumatoid Arthritis
Cells 2019, 8(8), 816; https://doi.org/10.3390/cells8080816 - 02 Aug 2019
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease driven by genetic, environmental and epigenetic factors. Long non-coding RNAs (LncRNAs) are a key component of the epigenetic mechanisms and are known to be involved in the development of autoimmune diseases. In this work [...] Read more.
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease driven by genetic, environmental and epigenetic factors. Long non-coding RNAs (LncRNAs) are a key component of the epigenetic mechanisms and are known to be involved in the development of autoimmune diseases. In this work we aimed to identify significantly differentially expressed LncRNAs (DE-LncRNAs) that are functionally connected to modulated genes strictly associated with RA. In total, 542,500 transcripts have been profiled in peripheral blood mononuclear cells (PBMCs) from four patients with early onset RA prior any treatment and four healthy donors using Clariom D arrays. Results were confirmed by real-time PCR in 20 patients and 20 controls. Six DE-LncRNAs target experimentally validated miRNAs able to regulate differentially expressed genes (DEGs) in RA; among them, only FTX, HNRNPU-AS1 and RP11-498C9.15 targeted a large number of DEGs. Most importantly, RP11-498C9.15 targeted the largest number of signalling pathways that were found to be enriched by the global amount of RA-DEGs and that have already been associated with RA and RA–synoviocytes. Moreover, RP11-498C9.15 targeted the most highly connected genes in the RA interactome, thus suggesting its involvement in crucial gene regulation. These results indicate that, by modulating both microRNAs and gene expression, RP11-498C9.15 may play a pivotal role in RA pathogenesis. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis for Rheumatoid Arthritis)
Show Figures

Figure 1

Open AccessArticle
Myeloid Dendritic Cells Are Enriched in Lymph Node Tissue of Early Rheumatoid Arthritis Patients but not in At Risk Individuals
Cells 2019, 8(7), 756; https://doi.org/10.3390/cells8070756 - 20 Jul 2019
Abstract
Lymph nodes (LNs) are highly organized structures where specific immune responses are initiated by dendritic cells (DCs). We investigated the frequency and distribution of human myeloid (mDCs) and plasmacytoid (pDCs) in LNs and blood during the earliest phases of rheumatoid arthritis (RA). We [...] Read more.
Lymph nodes (LNs) are highly organized structures where specific immune responses are initiated by dendritic cells (DCs). We investigated the frequency and distribution of human myeloid (mDCs) and plasmacytoid (pDCs) in LNs and blood during the earliest phases of rheumatoid arthritis (RA). We included 22 RA-risk individuals positive for IgM rheumatoid factor and/or anti-citrullinated protein antibodies, 16 biological-naïve RA patients and 8 healthy controls (HCs). DC subsets (CD1c+ mDCs and CD304+ pDCs) in LN tissue and paired peripheral blood were analyzed using flow cytometry and confocal microscopy. In blood of RA patients a significant decreased frequency of pDCs was found, with a similar trend for mDCs. In contrast, mDC frequencies were higher in RA compared with HCs and RA-risk individuals, especially in LN. Frequency of mDCs seemed higher in LNs compared to paired blood samples in all donors, while pDCs were higher in LNs only in RA patients. As expected, both mDCs and pDCs localized mainly in T-cell areas of LN tissue. In conclusion, compared with RA-risk individuals, mDCs and pDCs were enriched in the LN tissue of early-RA patients, while their frequency in RA-risk individuals was comparable to HCs. This may suggest that other antigen-presenting cells are responsible for initial breaks of tolerance, while mDCs and pDCs are involved in sustaining inflammation. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis for Rheumatoid Arthritis)
Show Figures

Figure 1

Open AccessArticle
Peficitinib Inhibits the Chemotactic Activity of Monocytes via Proinflammatory Cytokine Production in Rheumatoid Arthritis Fibroblast-Like Synoviocytes
Cells 2019, 8(6), 561; https://doi.org/10.3390/cells8060561 - 09 Jun 2019
Abstract
Background: This study was performed to examine the effects of the Janus kinase (JAK) inhibitor peficitinib on fibroblast-like synoviocytes (FLS) obtained from patients with rheumatoid arthritis (RA). Methods: To examine the expression of JAK1, JAK2, and JAK3 in RA synovial tissue (ST) and [...] Read more.
Background: This study was performed to examine the effects of the Janus kinase (JAK) inhibitor peficitinib on fibroblast-like synoviocytes (FLS) obtained from patients with rheumatoid arthritis (RA). Methods: To examine the expression of JAK1, JAK2, and JAK3 in RA synovial tissue (ST) and FLS, immunohistochemistry was performed. We investigated the effects of peficitinib on interleukin 6 and IL-6 receptor responses in RA FLS. Phosphorylation of STAT was determined by western blot. To examine the functional analysis of peficitinib, we performed a proliferation and chemotaxis assays with FLS using THP-1 and peripheral blood mononuclear cells (PBMC). The inflammatory mediator expression of FLS was estimated by enzyme-linked immunosorbent assay. Results: JAK1, JAK2, and JAK3 were expressed in RA STs and FLS. Phosphorylation of STAT1, STAT3, and STAT5 in RA FLS was suppressed by peficitinib in a concentration-dependent manner. Peficitinib-treated RA FLS-conditioned medium reduced THP-1 and PBMC migration (p < 0.05) and proliferation of RA FLS (p < 0.05). Peficitinib suppressed the secretion of MCP-1/CCL2 in the RA FLS supernatant (p < 0.05). Conclusion: Peficitinib suppressed the JAK-STAT pathway in RA FLS and also suppressed monocyte chemotaxis and proliferation of FLS through inhibition of inflammatory cytokines. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis for Rheumatoid Arthritis)
Show Figures

Figure 1

Open AccessArticle
ZAP-70 Regulates Autoimmune Arthritis via Alterations in T Cell Activation and Apoptosis
Cells 2019, 8(5), 504; https://doi.org/10.3390/cells8050504 - 24 May 2019
Abstract
T cells play an essential role in the pathogenesis of both human rheumatoid arthritis (RA) and its murine models. A key molecule in T cell activation is ZAP-70, therefore we aimed to investigate the effects of partial ZAP-70 deficiency on the pathogenesis of [...] Read more.
T cells play an essential role in the pathogenesis of both human rheumatoid arthritis (RA) and its murine models. A key molecule in T cell activation is ZAP-70, therefore we aimed to investigate the effects of partial ZAP-70 deficiency on the pathogenesis of recombinant human G1(rhG1)-induced arthritis (GIA), a well-established mouse model of RA. Arthritis was induced in BALB/c and ZAP-70+/− heterozygous mice. Disease progression was monitored using a scoring system and in vivo imaging, antigen-specific proliferation, cytokine and autoantibody production was measured and T cell apoptotic pathways were analyzed. ZAP-70+/− mice developed a less severe arthritis, as shown by both clinical picture and in vitro parameters (decreased T cell proliferation, cytokine and autoantibody production). The amount of cleaved Caspase-3 increased in arthritic ZAP-70+/− T cells, with no significant changes in cleaved Caspase-8 and -9 levels; although expression of Bim, Bcl-2 and Cytochrome C showed alterations. Tyrosine phosphorylation was less pronounced in arthritic ZAP-70+/− T cells and the amount of Cbl-b—a negative regulator of T cell activation—decreased as well. We hypothesize that the less severe disease seen in the partial absence of ZAP-70 might be caused by the decreased T cell activation accompanied by increased apoptosis. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis for Rheumatoid Arthritis)
Show Figures

Figure 1

Open AccessArticle
A Disintegrin and Metalloprotease 15 is Expressed on Rheumatoid Arthritis Synovial Tissue Endothelial Cells and may Mediate Angiogenesis
Cells 2019, 8(1), 32; https://doi.org/10.3390/cells8010032 - 09 Jan 2019
Abstract
A disintegrin and metalloprotease 15 (ADAM15) is involved in several malignancies. In this study, we investigated the role of ADAM15 in rheumatoid arthritis (RA) angiogenesis. Soluble ADAM15 (s-ADAM15) in serum from RA and normal (NL) subjects was measured using ELISA. To determine membrane-anchored [...] Read more.
A disintegrin and metalloprotease 15 (ADAM15) is involved in several malignancies. In this study, we investigated the role of ADAM15 in rheumatoid arthritis (RA) angiogenesis. Soluble ADAM15 (s-ADAM15) in serum from RA and normal (NL) subjects was measured using ELISA. To determine membrane-anchored ADAM15 (ADAM15) expression in RA synovial tissues, immunohistochemistry was performed. To examine the role of ADAM15 in angiogenesis, we performed in vitro Matrigel assays and monocyte adhesion assays using human umbilical vein endothelial cells (HUVECs) transfected with ADAM15 siRNA. Finally, to investigate whether angiogenic mediators were affected by ADAM15, cytokines in ADAM15 siRNA-transfected HUVEC-conditioned medium were measured. ADAM15 was significantly higher in RA serum than in NL serum. ADAM15 was also expressed on RAST endothelial cells. ADAM15 siRNA-treated HUVECs had decreased EC tube formation in response to RA synovial fluids compared with non-treated HUVECs. The adhesion index of ADAM15 siRNA-transfected HUVECs was significantly lower than the adhesion index of control siRNA-transfected HUVECs. ENA-78/CXCL5 and ICAM-1 were decreased in tumor necrosis factor (TNF)-α-stimulated ADAM15 siRNA-transfected HUVEC-conditioned medium compared with TNF-α-stimulated control siRNA-transfected HUVEC-conditioned medium. These data show that ADAM15 plays a role in RA angiogenesis, suggesting that ADAM15 might be a potential target in inflammatory diseases such as RA. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis for Rheumatoid Arthritis)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Mucosa–Environment Interactions in the Pathogenesis of Rheumatoid Arthritis
Cells 2019, 8(7), 700; https://doi.org/10.3390/cells8070700 - 10 Jul 2019
Abstract
Mucosal surfaces play a central role in the pathogenesis of rheumatoid arthritis (RA). Several risk factors, such as cigarette smoking, environmental pollution, and periodontitis interact with the host at the mucosal level, triggering immune system activation. Moreover, the alteration of microbiota homeostasis is [...] Read more.
Mucosal surfaces play a central role in the pathogenesis of rheumatoid arthritis (RA). Several risk factors, such as cigarette smoking, environmental pollution, and periodontitis interact with the host at the mucosal level, triggering immune system activation. Moreover, the alteration of microbiota homeostasis is gaining increased attention for its involvement in the disease pathogenesis, modulating the immune cell response at a local and subsequently at a systemic level. Currently, the onset of the clinical manifest arthritis is thought to be the last step of a series of pathogenic events lasting years. The positivity for anti-citrullinated protein antibodies (ACPAs) and rheumatoid factor (RF), in absence of symptoms, characterizes a preclinical phase of RA—namely systemic autoimmune phase- which is at high risk for disease progression. Several immune abnormalities, such as local ACPA production, increased T cell polarization towards a pro-inflammatory phenotype, and innate immune cell activation can be documented in at-risk subjects. Many of these abnormalities are direct consequences of the interaction between the environment and the host, which takes place at the mucosal level. The purpose of this review is to describe the humoral and cellular immune abnormalities detected in subjects at risk of RA, highlighting their origin from the mucosa–environment interaction. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis for Rheumatoid Arthritis)
Show Figures

Graphical abstract

Open AccessReview
Post-Translational Modifications of Proteins: Novel Insights in the Autoimmune Response in Rheumatoid Arthritis
Cells 2019, 8(7), 657; https://doi.org/10.3390/cells8070657 - 29 Jun 2019
Abstract
Post-translational modifications (PTM) are chemical changes mostly catalyzed by enzymes that recognize specific target sequences in specific proteins. These modifications play a key role in regulating the folding of proteins, their targeting to specific subcellular compartments, their interaction with ligands or other proteins, [...] Read more.
Post-translational modifications (PTM) are chemical changes mostly catalyzed by enzymes that recognize specific target sequences in specific proteins. These modifications play a key role in regulating the folding of proteins, their targeting to specific subcellular compartments, their interaction with ligands or other proteins, and eventually their immunogenic properties. Citrullination is the best characterized PTM in the field of rheumatology, with antibodies anticyclic citrullinated peptides being the gold standard for the diagnosis of rheumatoid arthritis (RA). In recent years, growing evidence supports not only that a wide range of proteins are subject to citrullination and can trigger an autoimmune response in RA, but also that several other PTMs such as carbamylation and acetylation occur in patients with this disease. This induces a wide spectrum of autoantibodies, as biomarkers, with different sensitivity and specificity for diagnosis, which may be linked to peculiar clinical manifestations and/or response to treatment. The purpose of this review article is to critically summarize the available literature on antibodies against post-translationally modified proteins, in particular antibodies against citrullinated proteins (ACPA) and antibodies against modified proteins (AMPA), and outline their diagnostic and prognostic role to be implemented in clinical practice for RA patients. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis for Rheumatoid Arthritis)
Open AccessReview
Defective T-Cell Apoptosis and T-Regulatory Cell Dysfunction in Rheumatoid Arthritis
Cells 2018, 7(12), 223; https://doi.org/10.3390/cells7120223 - 22 Nov 2018
Cited by 9
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, systemic autoimmune disease that mostly affects small and large synovial joints. At the molecular level, RA is characterized by a profoundly defective innate and adaptive immune response that results in a chronic state of inflammation. Two [...] Read more.
Rheumatoid arthritis (RA) is a chronic, progressive, systemic autoimmune disease that mostly affects small and large synovial joints. At the molecular level, RA is characterized by a profoundly defective innate and adaptive immune response that results in a chronic state of inflammation. Two of the most significant alterations in T-lymphocyte (T-cell) dysfunction in RA is the perpetual activation of T-cells that result in an abnormal proliferation state which also stimulate the proliferation of fibroblasts within the joint synovial tissue. This event results in what we have termed “apoptosis resistance”, which we believe is the leading cause of aberrant cell survival in RA. Finding therapies that will induce apoptosis under these conditions is one of the current goals of drug discovery. Over the past several years, a number of T-cell subsets have been identified. One of these T-cell subsets are the T-regulatory (Treg) cells. Under normal conditions Treg cells dictate the state of immune tolerance. However, in RA, the function of Treg cells become compromised resulting in Treg cell dysfunction. It has now been shown that several of the drugs employed in the medical therapy of RA can partially restore Treg cell function, which has also been associated with amelioration of the clinical symptoms of RA. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis for Rheumatoid Arthritis)
Back to TopTop