The Role of Nanoparticles in Tumor Treatment

A special issue of Biomolecules (ISSN 2218-273X). This special issue belongs to the section "Chemical Biology".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 2326

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
Interests: nanotechnology; transdermal/topical systems; skin delivery; lipid nanoparticles; controlled release; brain drug delivery; cancer therapy; quality by design
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in nanoparticles for safer and more effective cancer therapy. Nanoparticles predominantly fall into two categories: nanoparticles for gene therapy applications or for the delivery of small-molecule drugs for cancer treatment. They include liposome-, micelle- and protein-based nanoparticles and have biologically attractive properties such as biocompatibility and biodegradability. Nanomedicine could represent a step forward for the application of immunotherapies in clinical practices. By harnessing the potential of nanoparticles, this Special Issue aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.

This Special Issue’s goal is the design, development, and characterization of biological nanoparticles and their therapeutic application in cancer. This Special Issue will cover the latest advances made in the last few years.

We look forward to receiving your contributions.

Dr. Carla Vitorino
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoparticles
  • cancer therapy
  • nanotechnology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 3987 KiB  
Article
Lipopolymers as the Basis of Non-Viral Delivery of Therapeutic siRNA Nanoparticles in a Leukemia (MOLM-13) Model
by Panadda Yotsomnuk, Amarnath Praphakar Rajendran, Daniel Nisakar Meenakshi Sundaram, Luis Carlos Morales, Cezary Kucharski, Mohammad Nasrullah, Wanwisa Skolpap, Xiaoyan Jiang, Spencer B. Gibson, Joseph Brandwein and Hasan Uludağ
Biomolecules 2025, 15(1), 115; https://doi.org/10.3390/biom15010115 - 13 Jan 2025
Cited by 1 | Viewed by 1366
Abstract
Small interfering RNA (siRNA) therapy in acute myeloid leukemia (AML) is a promising strategy as the siRNA molecule can specifically target proteins involved in abnormal cell proliferation. The development of a clinically applicable method for delivering siRNA molecules is imperative due to the [...] Read more.
Small interfering RNA (siRNA) therapy in acute myeloid leukemia (AML) is a promising strategy as the siRNA molecule can specifically target proteins involved in abnormal cell proliferation. The development of a clinically applicable method for delivering siRNA molecules is imperative due to the challenges involved in effectively delivering the siRNA into cells. We investigated the delivery of siRNA to AML MOLM-13 cells with the use of two lipid-substituted polyethyleneimines (PEIs), a commercially available reagent (Prime-Fect) and a recently reported reagent with improved lipid substitution (PEI1.2k-PHPA-Lin9). The siRNAs utilized in this study were targeting the oncogenes FLT3 and KMT2A::MLLT3. Both lipopolymers gave similar-size siRNA complexes (210–220 nm) with positive ζ-potentials (+17 to +25 mV). While the binding efficiency of both lipopolymers to siRNA were similar, PEI1.2k-PHPA-Lin9 complexes were more resistant to heparin-induced dissociation. The quantitative analysis of gene silencing performed by qPCR as well as immunostaining/flow cytometry indicated significant reduction in both FLT3 expression and FLT3 protein after specific siRNA delivery. The desired inhibition of cell growth was attained with both FLT3 and KMT2A::MLLT3 siRNAs, and the combination provided more potent effects in both cell growth and colony formation assays. Induction of apoptosis was confirmed after specific siRNA treatments using the Annexin V assay. Using Luc(+) MOLM-13 cells, the growth of the xenografted cells was shown to be retarded with Prime-Fect-delivered FLT3 siRNA, unlike the siRNA delivered with PEI1.2k-PHPA-Lin9. These results demonstrate the potential of designed lipopolymers in implementing RNAi (via delivery of siRNA) for inhibition of leukemia growth and provide evidence for the feasibility of targeting different oncogenes using siRNA-mediated therapy. Full article
(This article belongs to the Special Issue The Role of Nanoparticles in Tumor Treatment)
Show Figures

Figure 1

Review

Jump to: Research

36 pages, 5220 KiB  
Review
Discovery of Drugs Targeting Mutant p53 and Progress in Nano-Enabled Therapeutic Strategy for p53-Mutated Cancers
by Na Zhang, Zhiyuan Jing, Jie Song, Qiyue Liang, Yuxue Xu, Zhaowei Xu, Longping Wen and Pengfei Wei
Biomolecules 2025, 15(6), 763; https://doi.org/10.3390/biom15060763 - 26 May 2025
Viewed by 630
Abstract
Mutations in the p53 gene are frequently observed in various cancers, prompting the initiation of efforts to restore p53 function as a therapeutic approach several decades ago. Nevertheless, only a limited number of drug development initiatives have progressed to late-stage clinical trials, and [...] Read more.
Mutations in the p53 gene are frequently observed in various cancers, prompting the initiation of efforts to restore p53 function as a therapeutic approach several decades ago. Nevertheless, only a limited number of drug development initiatives have progressed to late-stage clinical trials, and to date, no p53-targeted therapies have received approval in the USA or Europe. This situation can be attributed primarily to the characteristics of p53 as a nuclear transcription factor, which lacks the conventional features associated with drug targets and has historically been considered “undruggable”. In recent years, however, several promising strategies have emerged, including the enhanced iterations of previous approaches and novel techniques aimed at targeting proteins that have traditionally been considered undruggable. There is a growing interest in small molecules that can restore the tumor-suppressive functions of mutant p53 proteins, and the development of drugs specifically designed for particular p53 mutation types is currently underway. Other approaches aim to deplete mutant p53 or exploit vulnerabilities associated with its expression. Additionally, genetic therapy strategy and approaches have rekindled interest. Advances in mutant p53 biology, compound mechanisms, treatment modalities, and nanotechnology have opened up new avenues for p53-based therapies. However, significant challenges remain in clinical development. This review reassesses the progress in targeting p53-mutant cancers, discusses the obstacles in translating these approaches into effective therapies, and highlights p53-based therapies via nanotechnology. Full article
(This article belongs to the Special Issue The Role of Nanoparticles in Tumor Treatment)
Show Figures

Figure 1

Back to TopTop