Application of Natural Products for Weed Control in Agricultural Systems

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Weed Science and Weed Management".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 7686

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biological Sciences, São Paulo State University “Júlio de Mesquita Filho”, Assis 19806-900, São Paulo, Brazil
Interests: allelopathy; phytotoxic activity; alternative herbicides; natural products; weed control; abiotic stress and plant responses

Special Issue Information

Dear Colleagues,

Considering that many weeds have become resistant to the herbicides that are currently available, and the growing global demand for food produced in economic and environmentally sustainable ways, more studies are needed to find replacements for at least some of the existing products used for weed control. Innovative and sustainable solutions are needed, which could involve the use of natural products, such as allelochemicals, or synthetic products inspired by natural products, to control weeds. This Special Issue is a place to share your studies on topics related to weed research. In particular, submissions on the following, and related, topics are encouraged: (1) the phytotoxicity of living organism extracts; (2) the fate of allelochemicals in agricultural systems; (3) natural substances which could be used as bioherbicides and their mechanisms of action; and (4) the phytotoxicity of synthetic products inspired by natural products.

Prof. Dr. Rosana Marta Kolb
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioherbicide
  • allelopathy
  • phytotoxicity bioassays

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 2556 KiB  
Article
The Efficacy of Sunn Hemp (Crotalaria juncea) and Fe3O4 Nanoparticles in Controlling Weed Seed Germination
by Fatemeh Ahmadnia, Ali Ebadi, Mohammad Taghi Alebrahim, Ghasem Parmoon, Solmaz Feizpoor and Masoud Hashemi
Agronomy 2025, 15(4), 795; https://doi.org/10.3390/agronomy15040795 - 24 Mar 2025
Viewed by 315
Abstract
Utilizing nanotechnology for weed management offers a sustainable alternative to synthetic herbicides. This study evaluated the effectiveness of sunn hemp extract (SH), Fe3O4 nanoparticles (NPs), and Fe3O4/sunn hemp NPs in inhibiting the germination of redroot pigweed [...] Read more.
Utilizing nanotechnology for weed management offers a sustainable alternative to synthetic herbicides. This study evaluated the effectiveness of sunn hemp extract (SH), Fe3O4 nanoparticles (NPs), and Fe3O4/sunn hemp NPs in inhibiting the germination of redroot pigweed (Amaranthus retroflexus L.), wild mustard (Sinapis arvensis L.), and lamb’s quarters (Chenopodium album L.) weeds. The structural characteristics of the NPs were analyzed using Scanning electron microscopy (SEM), Scanning X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Vibrating sample magnetometer (VSM), Brunner–Emmet–Teller (BET), and Fourier-transform infrared spectroscopy (FTIR). The optimal Fe3O4 NP concentration for reducing seed germination ranged from 3000 to 3100 mg L−1. Higher concentrations of SH extract (100, 150, and 200 g L−1) effectively inhibited weed seed germination with A. retroflexus displaying the highest sensitivity. The maximal effective concentration (NOECmax) for Fe3O4/sunn hemp NPs was 10 g L−1 for S. arvensis, 150 g L1 for A. retroflexus, and 200 g L−1 for C. album. Fe3O4/sunn hemp NPs led to a reduction in 1/D50 and an increase in EEC50, indicating a rise in sensitivity to Fe3O4 NPs, particularly in S. arvensis. Variations in species responses to SH, Fe3O4 NPs, and Fe3O4/sunn hemp NPs are likely influenced by genetic, physiological, and ecological factors. Overall, the findings suggest that utilizing Fe3O4/sunn hemp NPs offers an effective strategy for sustainable weed management. Full article
Show Figures

Figure 1

15 pages, 2834 KiB  
Article
Watermelon Genotypes and Weed Response to Chicken Manure and Molasses-Induced Anaerobic Soil Disinfestation in High Tunnels
by Muhammad Sohaib Chattha, Brian K. Ward, Chandrasekar S. Kousik, Amnon Levi, Bhupinder S. Farmaha, Michael W. Marshall, William C. Bridges and Matthew A. Cutulle
Agronomy 2025, 15(3), 705; https://doi.org/10.3390/agronomy15030705 - 14 Mar 2025
Viewed by 772
Abstract
Weed and disease management in organic watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] production is challenging. Yellow nutsedge (Cyperus esculentus L.) and Palmer amaranth (Amaranthus palmeri S. Wats.) are two competitor weeds in watermelon plasticulture production systems. Anaerobic soil disinfestation [...] Read more.
Weed and disease management in organic watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] production is challenging. Yellow nutsedge (Cyperus esculentus L.) and Palmer amaranth (Amaranthus palmeri S. Wats.) are two competitor weeds in watermelon plasticulture production systems. Anaerobic soil disinfestation (ASD) is an emerging non-chemical approach to control weeds and soilborne plant pathogens, especially in organic farming. The effect of ASD treatments on weeds and soilborne diseases is being documented on different specialty crops. However, the impact of ASD treatments on the crop and crop genotypes; specifically watermelon has not been elucidated. Therefore, the impact of chicken manure and molasses (CMM)-induced ASD on twenty commercially available watermelon genotypes/rootstocks and major weed species was evaluated in a high tunnel experiment. The experiment was constructed as a randomized complete block design with three replications. The treatments consisted of a factorial of carbon source (1) non-treated check (CK), (2) CMM by twenty watermelon genotypes and rootstock. Soil treated with carbon CMM demonstrated significantly greater cumulative anaerobicity (246,963) activity relative to CK (575,372). Under anaerobic conditions, CMM achieved 91% weed control compared to CK. A lower number of yellow nutsedge (2) and Palmer amaranth (1) counts were recorded in CMM compared to CK (8) and (28), respectively. Among watermelon genotypes, ‘Extazy’, ‘Powerhouse’, ‘Sangria’, and ‘Exclamation’ had greater vigor 8.5, 8.4, 8.4, and 8.3, respectively, at 28 days after transplanting in CMM-treated soil. Greater watermelon plant fresh biomass was recorded in CMM-treated soil for ‘Extazy’ (434 g), ‘Powerhouse’ (409 g), ‘Exclamation’ (364 g), and ‘Sangria’ (360 g). This study demonstrated the variable response of watermelon genotypes to CMM-induced ASD and provides a guide for germplasm selection in organic watermelon production under field conditions. Full article
Show Figures

Figure 1

14 pages, 1180 KiB  
Article
Hydroxychalcones as Herbicides
by Raphael Mota Garrido, Franck Emmanuel Dayan, Patrick Rômbola Ozanique, Luis Octavio Regasini and Rosana Marta Kolb
Agronomy 2025, 15(3), 572; https://doi.org/10.3390/agronomy15030572 - 26 Feb 2025
Viewed by 445
Abstract
Efforts to develop weed management alternatives are urgently required due to various challenges, such as declining crop yields, rising production costs, and the growing prevalence of herbicide-resistant weed species. Chalcones occur in nature and have phytotoxic potential and concise synthesis; additionally, they are [...] Read more.
Efforts to develop weed management alternatives are urgently required due to various challenges, such as declining crop yields, rising production costs, and the growing prevalence of herbicide-resistant weed species. Chalcones occur in nature and have phytotoxic potential and concise synthesis; additionally, they are multifunctional, with diverse biomolecular targets and a broad spectrum of biological activities. This study sought to assess the herbicidal potential of 3′-hydroxychalcones against weed species under laboratory conditions. Their effects were investigated using germination bioassays, early growth measurements, and the seedling vigor index, all prepared with a concentration of 1 × 10−3 mol L−1 3′-hydroxychalcones. 3′-Hydroxy-4-pyridyl-chalcone caused the greatest inhibition (81%) of the seedling length in Urochloa decumbens. Other 3′-hydroxychalcones also caused large initial growth reductions, such as 3′-hydroxy-4-pyridyl-chalcone (75%) and 3′-hydroxy-4-nitrochalcone (68%) in Digitaria insularis and 3′-hydroxy-4-bromochalcone (73%) in Raphanus raphanistrum. The greatest reduction in the seedling vigor index was 81% in D. insularis treated with the 3′-hydroxy-4-bromochalcone. The same 3′-hydroxychalcone caused an 80% reduction in Amaranthus viridis. In conclusion, 3′-hydroxychalcones exhibit herbicidal activity, suggesting they could serve as a solution for future weed management strategies. Full article
Show Figures

Figure 1

15 pages, 2202 KiB  
Article
Effectiveness of Anaerobic Soil Disinfestation for Weed and Nematode Management in Organic Sweetpotato Production
by Simardeep Singh, William Rutter, Phillip A. Wadl, Harrison Tyler Campbell, Churamani Khanal and Matthew Cutulle
Agronomy 2024, 14(9), 1935; https://doi.org/10.3390/agronomy14091935 - 28 Aug 2024
Cited by 2 | Viewed by 1319
Abstract
Weeds and nematodes are particularly problematic in organic sweetpotato production due to a lack of effective pesticides. Anaerobic soil disinfestation (ASD) has the potential to fit into current pest management practices as an alternative to pesticide application. Greenhouse studies were conducted at the [...] Read more.
Weeds and nematodes are particularly problematic in organic sweetpotato production due to a lack of effective pesticides. Anaerobic soil disinfestation (ASD) has the potential to fit into current pest management practices as an alternative to pesticide application. Greenhouse studies were conducted at the Clemson Coastal Research and Education Center (CREC) in Charleston, SC, to investigate the impact of carbon source amendment and a no carbon source treatment, and soil type on cumulative anaerobicity, weed control, nematode population, and sweetpotato vigor. Microcosms were filled with one of three different soil types (Charleston—loamy/native; Blackville—high coarse sand content; and Clemson—high clay content) and were mixed with cottonseed meal (CSM) or no carbon amendment. The pots were then sealed with plastic totally impenetrable film (Tif) for 6 weeks, followed by the transplanting of sweetpotato (cv Bayou Belle) slips. The results suggested that the CSM-treated microcosms spent more time under anaerobic conditions than those treated with the no carbon amendment. The microcosms that experienced a longer duration of anaerobicity had a lower percent weed cover (49%), fewer nematode egg masses, and a lower gall index when compared to microcosms which experienced a shorter duration of anaerobicity. Significantly higher instances of leaf necrosis were observed in the sweetpotato slips sown in the CSM-treated microcosms. The addition of CSM as a carbon source to facilitate ASD resulted in similar above-ground biomasses of the sweetpotato plants compared to the treatments containing no carbon amendment. However, a significantly lower below-ground biomass of the sweetpotato plants was observed in the CSM-treated microcosms. Full article
Show Figures

Figure 1

20 pages, 5791 KiB  
Article
Unraveling Shikimate Dehydrogenase Inhibition by 6-Nitroquinazoline-2,4-diol and Its Impact on Soybean and Maize Growth
by Aline Marengoni Almeida, Josielle Abrahão, Flavio Augusto Vicente Seixas, Paulo Sergio Alves Bueno, Marco Aurélio Schüler de Oliveira, Larissa Fonseca Tomazini, Rodrigo Polimeni Constantin, Wanderley Dantas dos Santos, Rogério Marchiosi and Osvaldo Ferrarese-Filho
Agronomy 2024, 14(5), 930; https://doi.org/10.3390/agronomy14050930 - 28 Apr 2024
Cited by 2 | Viewed by 1827
Abstract
The shikimate pathway is crucial for the biosynthesis of aromatic amino acids in plants and represents a promising target for developing new herbicides. This work aimed to identify inhibitors of shikimate dehydrogenase (SDH), a key enzyme of the shikimate pathway that catalyzes the [...] Read more.
The shikimate pathway is crucial for the biosynthesis of aromatic amino acids in plants and represents a promising target for developing new herbicides. This work aimed to identify inhibitors of shikimate dehydrogenase (SDH), a key enzyme of the shikimate pathway that catalyzes the conversion of 3-dehydroshikimate to shikimate. Virtual screening and molecular dynamic simulations were performed on the SDH active site of Arabidopsis thaliana (AtSDH), and 6-nitroquinazoline-2,4-diol (NQD) was identified as a potential inhibitor. In vitro assays showed that NQD decreased the activity of AtSDH by reducing Vmax while keeping KM unchanged, indicating non-competitive inhibition. In vivo, hydroponic experiments revealed that NQD reduced the root length of soybean and maize. Additionally, NQD increased the total protein content and certain amino acids. Soybean roots uptake NQD more efficiently than maize roots. Furthermore, NQD reduced shikimate accumulation in glyphosate-treated soybean roots, suggesting its potential to restrict the flow of metabolites along the shikimate pathway in soybean. The simultaneous treatment of maize seedlings with glyphosate and NQD accumulated gallic acid in the roots, indicating that NQD inhibits SDH in vivo. Overall, the data indicate that NQD inhibits SDH both in vitro and in vivo, providing valuable insights into the potential development of herbicides targeting SDH. Full article
Show Figures

Figure 1

14 pages, 1236 KiB  
Article
Herbicidal Potential of the Natural Compounds Carvacrol, Thymol, Eugenol, p-Cymene, Citral and Pelargonic Acid in Field Conditions: Indications for Better Performance
by Natalia Torres-Pagán, Marta Muñoz, Sara Barbero, Roberta Mamone, Rosa Peiró, Alessandra Carrubba, Adela M. Sánchez-Moreiras, Diego Gómez de Barreda and Mercedes Verdeguer
Agronomy 2024, 14(3), 537; https://doi.org/10.3390/agronomy14030537 - 5 Mar 2024
Cited by 4 | Viewed by 2370
Abstract
In recent years, interest in natural products with herbicidal activity as new tools for integrated weed management has increased. The European Union is demanding a reduction in the number of herbicides used, forbidding use of the most toxic ones, despite the problem of [...] Read more.
In recent years, interest in natural products with herbicidal activity as new tools for integrated weed management has increased. The European Union is demanding a reduction in the number of herbicides used, forbidding use of the most toxic ones, despite the problem of weed resistance increasing. Pelargonic acid (PA) is the only natural herbicide available in Spain. In this work, two field assays were performed with the natural compounds carvacrol (CAR), citral (CIT), eugenol (EUG), thymol (THY), p-cymene (P-CYM), (PA), and the combination of PA with CIT—all except P-CYM formulated by Seipasa—to test their herbicidal efficacy in real conditions. They were compared with commercial PA, glyphosate (GLY) and oxyfluorfen (OXY). In both experiments, GLY achieved the best weed control. Considering the natural herbicides, PA formulated by Seipasa and PA plus CIT were the most effective. From both experiments, some conclusions can be extracted for better herbicidal performance of natural products: (1) use products on sensitive weed species, (2) treat weeds at earlier phenological stages, (3) find the active doses in field conditions, (4) cover weeds well when treating, (5) ensure adequate formulation of products, and (6) develop a strategy for correct application. Full article
Show Figures

Figure 1

Back to TopTop