Special Issue "Crop Physiology and Stress"

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Crop Breeding and Genetics".

Deadline for manuscript submissions: 15 January 2022.

Special Issue Editor

Dr. Cordovilla Palomares
E-Mail Website
Guest Editor
Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
Interests: plant stress physiology; plant ecophysiology; plant responses to salt stress; physiology of halophytes; role of polyamines in stress; plant disease control

Special Issue Information

Dear Colleagues,

Agriculture faces challenges such as environmental change and an increasing world population. The increase in the quantity and quality of agricultural products is of great interest. This requires adequate growth and development of the plant and proper crop management. There are several lines of research aimed at studying the physiology of plants and crops. This issue aims to include the main lines of study that are being developed considering the optimal and stress scenarios that are affecting crops.

This Special Issue will focus on “Crop Physiology”. We welcome novel research and reviews covering all topics related, but not limited, to environment–plant interaction, stress physiology, plant–microbe interaction, adaptation of plants to the environment, plants’ response to stress, and production and stress.

Dr. Cordovilla Palomares
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant ecophysiology
  • carbon utilization
  • photosynthesis
  • water relations
  • plant water potential
  • plant mineral nutrition
  • plant growth regulators
  • crop production
  • plant-microbe interactions
  • genetic resources
  • differences between cultivars
  • soil-plant interaction
  • environment-plant interaction
  • environmental stress physiology
  • abiotic stress
  • climate change
  • adaptation of plants to the environment

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Evaluation of Traits’ Performance Contributing to Drought Tolerance in Sorghum
Agronomy 2021, 11(9), 1698; https://doi.org/10.3390/agronomy11091698 - 26 Aug 2021
Viewed by 385
Abstract
Sorghum (Sorghum bicolor [L.] Moench) is an important food crop for people in semiarid Africa. The crop is affected by post-flowering drought; therefore, the study was conducted to screen traits contributing to drought tolerance using BC2F4 sorghum genotypes in [...] Read more.
Sorghum (Sorghum bicolor [L.] Moench) is an important food crop for people in semiarid Africa. The crop is affected by post-flowering drought; therefore, the study was conducted to screen traits contributing to drought tolerance using BC2F4 sorghum genotypes in stressed and unstressed water conditions in a split-plot design. Water stress (0 mm/day) was applied at post-flowering to plant maturity in water-stressed treatment. The genotype SE438 produced the highest grain yield (2.65 ton ha−1) in water-stressed environment and NA316C yielded highest (3.42 ton ha−1) under well-watered (7 mm/day) environment. There were significant differences of most traits evaluated at p < 0.01 across environments. The mean squares of traits for genotypes by environments revealed interactions at p < 0.05 and p < 0.01. The indices geometric mean productivity (GMP) and mean productivity (MP) were highly correlated with yield under well-watered (YP) and water-stressed condition (YS) and each other. The first principal axis (PC1) explained 59.1% of the total variation. It is the best indicator of yield potential and drought tolerance of sorghum genotypes in this study. Therefore, further improvement is needed to strengthen drought tolerance and yield in sorghum. Full article
(This article belongs to the Special Issue Crop Physiology and Stress)
Show Figures

Figure 1

Communication
Are Wild Blueberries a Crop with Low Photosynthetic Capacity? Chamber-Size Effects in Measuring Photosynthesis
Agronomy 2021, 11(8), 1572; https://doi.org/10.3390/agronomy11081572 - 06 Aug 2021
Viewed by 356
Abstract
Wild lowbush blueberries, an important fruit crop native to North America, contribute significantly to the economy of Maine, USA, Atlantic Canada, and Quebec. However, its photosynthetic capacity has not been well-quantified, with only a few studies showing its low photosynthetic rates. Its small [...] Read more.
Wild lowbush blueberries, an important fruit crop native to North America, contribute significantly to the economy of Maine, USA, Atlantic Canada, and Quebec. However, its photosynthetic capacity has not been well-quantified, with only a few studies showing its low photosynthetic rates. Its small leaves make accurate leaf-level photosynthetic measurements difficult and introduce potential uncertainties in using large leaf chambers. Here, we determined the photosynthetic rate for five different wild blueberry genotypes using a big leaf chamber enclosing multiple leaves and a small leaf chamber with a single leaf to test whether using big leaf chambers (branch-level measurements) underestimates the photosynthetic capacity. Photosynthetic rates of wild blueberries were significantly (35–47%) lower when using the big leaf chamber, and they are not a crop with low photosynthetic capacity, which can be as high as 16 μmol m−2 s−1. Additionally, wild blueberry leaves enclosed in the big chamber at different positions of a branch did not differ in chlorophyll content and photosynthetic rate, suggesting that the difference was not caused by variation among leaves but probably due to leaf orientations and self-shading in the big chamber. A significant linear relationship between the photosynthetic rate measured by the small and big leaf chambers suggests that the underestimation in leaf photosynthetic capacity could be corrected. Therefore, chamber-size effects need to be considered in quantifying photosynthetic capacity for small-leaf crops, and our study provided important guidelines for future photosynthesis research. We also established the relationship between the Electron Transport Rate (ETR) and photosynthetic CO2 assimilation for wild blueberries. ETR provides an alternative to quantify photosynthesis, but the correlation coefficient of the relationship (R2 = 0.65) suggests that caution is needed in this case. Full article
(This article belongs to the Special Issue Crop Physiology and Stress)
Show Figures

Figure 1

Article
Silicon Modulates Molecular and Physiological Activities in Lsi1 Transgenic and Wild Lemont Rice Seedlings under Arsenic Stress
Agronomy 2021, 11(8), 1532; https://doi.org/10.3390/agronomy11081532 - 30 Jul 2021
Viewed by 391
Abstract
Arsenic is one of the most dangerous metalloids, and silicon is a helpful element supporting plants to withstand stress. In this study, three factors were considered, including rice accessions with three different lines, including Lsi1-RNAi line (LE-R), Lsi1 overexpression line (LE-OE), and [...] Read more.
Arsenic is one of the most dangerous metalloids, and silicon is a helpful element supporting plants to withstand stress. In this study, three factors were considered, including rice accessions with three different lines, including Lsi1-RNAi line (LE-R), Lsi1 overexpression line (LE-OE), and their wild type (LE-WT), and silicon and arsenic treatments with two different levels. Analysis of variance in dry weight biomass, protein content, arsenic, and silicon concentration has shown a significant interaction between three factors. Further analysis showed that the silicon concentration of all rice seedlings under silicon treatments increased significantly. The LE-OE line has shown a higher ability to absorb silicon in hydroponic conditions than the wild type, and when the seedlings were exposed to arsenic, the concentration of arsenic in all lines increased significantly. Adding silicon to over-expressed rice lines with the Lsi1 gene creates better arsenic resistance than their wild type. These findings confirmed antagonism between silicon and arsenic, and seedlings exposed to arsenic showed a reduction in silicon concentration in all rice lines. RNA-seq analysis showed 106 differentially expressed genes in the LE-OE line, including 75 up-regulated genes and 31 down-regulated genes. DEGs in the LE-R line were 449 genes, including 190 up-regulated and 259 down-regulated genes. Adding treatment has changed the expression of Calcium-binding EGF domain-containing, Os10g0530500, Os05g0240200 in both LE-OE and LE-R roots. They showed that transgenic cultivars were more resistant to arsenic than wild-type, especially when silicon was added to the culture medium. Full article
(This article belongs to the Special Issue Crop Physiology and Stress)
Show Figures

Figure 1

Article
Carbohydrate and Amino Acid Dynamics during Grain Growth in Four Temperate Cereals under Well-Watered and Water-Limited Regimes
Agronomy 2021, 11(8), 1516; https://doi.org/10.3390/agronomy11081516 - 29 Jul 2021
Viewed by 388
Abstract
Grain development in cereals depends on synthesis and remobilisation compounds such as water-soluble carbohydrates (WSCs), amino acids (AAs), minerals and environmental conditions during pre- and post-anthesis. This study analyses the impact of water stress on metabolite (WSCs, AAs and nitrogen) dynamics between the [...] Read more.
Grain development in cereals depends on synthesis and remobilisation compounds such as water-soluble carbohydrates (WSCs), amino acids (AAs), minerals and environmental conditions during pre- and post-anthesis. This study analyses the impact of water stress on metabolite (WSCs, AAs and nitrogen) dynamics between the source (leaves and stems) and sink (grain) organs in triticale, bread wheat, durum wheat and barley. Plants were grown in glasshouse conditions under well-watered (WW) and water-limited (WL) regimes (from flag leaf fully expanded until maturity). The results showed that the stem WSC content and the apparent mobilisation of WSC to the grain were much higher in triticale and were associated with its larger grain size and grain number. In the four cereals, grain weight and the number of kernels per spike were positively associated with stem WSC mobilisation. After anthesis, the AA concentration in leaves was much lower than in the grain. In grain, the main AAs in terms of concentration were Asn, Pro and Gln in triticale, bread, and durum wheat, and Asn, Pro and Val in barley. The water-limited regime reduced grain weight per plant in the four cereal species, but it had no clear effects on WSC content and AAs in leaves and grain. In general, triticale was less affected by WL than the other cereals. Full article
(This article belongs to the Special Issue Crop Physiology and Stress)
Show Figures

Figure 1

Article
Evaluation of the Tolerance Ability of Wheat Genotypes to Drought Stress: Dissection through Culm-Reserves Contribution and Grain Filling Physiology
Agronomy 2021, 11(6), 1252; https://doi.org/10.3390/agronomy11061252 - 21 Jun 2021
Viewed by 888
Abstract
Drought stress is one of the limiting factors for grain filling and yield in wheat. The grain filling and determinants of individual grain weight depend on current assimilation and extent of remobilization of culm reserves to grains. A pot experiment was conducted with [...] Read more.
Drought stress is one of the limiting factors for grain filling and yield in wheat. The grain filling and determinants of individual grain weight depend on current assimilation and extent of remobilization of culm reserves to grains. A pot experiment was conducted with eight wheat cultivars at the Pot House to study the grain filling and the contributions of reserves in culm, including the sheath to grain yield under drought stress. Drought stress was enforced by restricting irrigation during the grain-filling period. The plants (tillers) were harvested at anthesis, milk-ripe, and maturity. The changes in dry weights of leaves, culm with sheath, spikes, and grains; and the contribution of culm reserves to grain yield were determined. Results revealed that drought stress considerably decreased the grain filling duration by 15–24% and grain yield by 11–34%. Further, drought-induced early leaf senescence and reduced total dry matter production indicate the minimum contribution of current assimilation to grain yield. The stress reduced the contribution of culm reserves, the water-soluble carbohydrates (WSCs), to the grains. The accumulation of culm WSCs reached peak at milk ripe stage in control, varied from 28.6 to 84 mg culm−1 and that significantly reduced in the range from 14.9 to 40.6 mg culm−1 in stressed plants. The residual culm WSCs in control and stressed plants varied from 1.23 to 8.12 and 1.00 to 3.40 mg g−1 culm dry mass, respectively. BARI Gom 24 exhibited a higher contribution of culm WSCs to grain yield under drought, while the lowest contribution was found in Kanchan. Considering culm reserves WSCs and their remobilization along with other studied traits, BARI Gom 24 showed greater drought tolerance and revealed potential to grow under water deficit conditions in comparison to other cultivars. Full article
(This article belongs to the Special Issue Crop Physiology and Stress)
Show Figures

Figure 1

Article
Effect of Salinity Stress on Physiological Changes in Winter and Spring Wheat
Agronomy 2021, 11(6), 1193; https://doi.org/10.3390/agronomy11061193 - 11 Jun 2021
Cited by 2 | Viewed by 796
Abstract
Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five [...] Read more.
Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter wheat genotypes seedlings. We evaluated the salt stress on root and shoot growth attributes, i.e., root length (RL), shoot length (SL), the relative growth rate of root length (RGR-RL), and shoot length (RGR-SL). The ionic content of the leaves was also measured. Physiological traits were also assessed, including stomatal conductance (gs), chlorophyll content index (CCI), and light-adapted leaf chlorophyll fluorescence, i.e., the quantum yield of photosystem II (Fv/Fm′) and instantaneous chlorophyll fluorescence (Ft). Physiological and growth performance under salt stress (0, 100, and 200 mol/L) were explored at the seedling stage. The analysis showed that spring wheat accumulated low Na+ and high K+ in leaf blades compared with winter wheat. Among the genotypes, Sakha 8, S-24, W4909, and W4910 performed better and had improved physiological attributes (gs, Fv/Fm′, and Ft) and seedling growth traits (RL, SL, RGR-SL, and RGR-RL), which were strongly linked with proper Na+ and K+ discrimination in leaves and the CCI in leaves. The identified genotypes could represent valuable resources for genetic improvement programs to provide a greater understanding of plant tolerance to salt stress. Full article
(This article belongs to the Special Issue Crop Physiology and Stress)
Show Figures

Figure 1

Article
Defense Responses in the Interactions between Medicinal Plants from Lamiaceae Family and the Two-Spotted Spider Mite Tetranychus urticae Koch (Acari: Tetranychidae)
Agronomy 2021, 11(3), 438; https://doi.org/10.3390/agronomy11030438 - 27 Feb 2021
Cited by 1 | Viewed by 726
Abstract
This study aimed to determine the effects of plant species on the biological parameters of Tetranychus urticae Koch and the time of mite infestation on plant physiology in Ocimum basilicum L., Melissa officinalis L. and Salvia officinalis L. Mite infestation induced various levels [...] Read more.
This study aimed to determine the effects of plant species on the biological parameters of Tetranychus urticae Koch and the time of mite infestation on plant physiology in Ocimum basilicum L., Melissa officinalis L. and Salvia officinalis L. Mite infestation induced various levels of oxidative stress depending on plant species and the duration of infestation. Host plants affected T. urticae life table parameters. The low level of susceptibility was characteristic of S. officinalis, which appeared to be the least infected plant species and reduced mites demographic parameters. Infested leaves of S. officinalis contained elevated levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) compared to control. In addition, higher membrane lipid peroxidation and higher activity of guaiacol peroxidase (GPX) and lower activity of catalase (CAT) were recorded with a longer mite infestation. In contrast, O. basilicum appeared to be a suitable host on which T. urticae could develop and increase in number. In basil leaves, increasing levels of hydrogen peroxide and MDA with elevated GPX activity and strongly decreased catalase activity were recorded. Knowledge of the differences in mite susceptibility of the tested medicinal plants described in this study has the potential to be applied in breeding strategies and integrated T. urticae pest management in medicinal plant cultivations. Full article
(This article belongs to the Special Issue Crop Physiology and Stress)
Show Figures

Figure 1

Article
Effects of 24-Epibrassinolide, Bikinin, and Brassinazole on Barley Growth under Salinity Stress Are Genotype- and Dose-Dependent
Agronomy 2021, 11(2), 259; https://doi.org/10.3390/agronomy11020259 - 30 Jan 2021
Viewed by 727
Abstract
Brassinosteroids (BRs) are involved in the regulation of many plant developmental processes and stress responses. In the presented study, we found a link between plant growth under salinity stress and sensitivity to 24-epibrassinolide (24-EBL, the most active phytohormone belonging to BRs), brassinazole (Brz) [...] Read more.
Brassinosteroids (BRs) are involved in the regulation of many plant developmental processes and stress responses. In the presented study, we found a link between plant growth under salinity stress and sensitivity to 24-epibrassinolide (24-EBL, the most active phytohormone belonging to BRs), brassinazole (Brz) and bikinin (inhibitors of BR biosynthesis and signaling pathways, respectively). Plant sensitivity to treatment with active substances and salinity stress was genotype-dependent. Cv. Haruna Nijo was more responsive during the lamina joint inclination test, and improved shoot and root growth at lower concentrations of 24-EBL and bikinin under salinity stress, while cv. Golden Promise responded only to treatments of higher concentration. The use of Brz resulted in significant dose-dependent growth inhibition, greater for cv. Haruna Nijo. The results indicated that BR biosynthesis and/or signaling pathways take part in acclimation mechanisms, however, the regulation is complex and depends on internal (genotypic and tissue/organ sensitivity) and external factors (stress). Our results also confirmed that the lamina joint inclination test is a useful tool to define plant sensitivity to BRs, and to BR-dependent salinity stress. The test can be applied to manipulate the growth and stress responses of crops in agricultural practice or to select plants that are sensitive/tolerant to salinity stress in the plant breeding projects. Full article
(This article belongs to the Special Issue Crop Physiology and Stress)
Show Figures

Figure 1

Article
Consequences and Mitigation Strategies of Abiotic Stresses in Wheat (Triticum aestivum L.) under the Changing Climate
Agronomy 2021, 11(2), 241; https://doi.org/10.3390/agronomy11020241 - 28 Jan 2021
Cited by 6 | Viewed by 1272
Abstract
Wheat is one of the world’s most commonly consumed cereal grains. During abiotic stresses, the physiological and biochemical alterations in the cells reduce growth and development of plants that ultimately decrease the yield of wheat. Therefore, novel approaches are needed for sustainable wheat [...] Read more.
Wheat is one of the world’s most commonly consumed cereal grains. During abiotic stresses, the physiological and biochemical alterations in the cells reduce growth and development of plants that ultimately decrease the yield of wheat. Therefore, novel approaches are needed for sustainable wheat production under the changing climate to ensure food and nutritional security of the ever-increasing population of the world. There are two ways to alleviate the adverse effects of abiotic stresses in sustainable wheat production. These are (i) development of abiotic stress tolerant wheat cultivars by molecular breeding, speed breeding, genetic engineering, and/or gene editing approaches such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas toolkit, and (ii) application of improved agronomic, nano-based agricultural technology, and other climate-smart agricultural technologies. The development of stress-tolerant wheat cultivars by mobilizing global biodiversity and using molecular breeding, speed breeding, genetic engineering, and/or gene editing approaches such as CRISPR-Cas toolkit is considered the most promising ways for sustainable wheat production in the changing climate in major wheat-growing regions of the world. This comprehensive review updates the adverse effects of major abiotic stresses and discusses the potentials of some novel approaches such as molecular breeding, biotechnology and genetic-engineering, speed breeding, nanotechnology, and improved agronomic practices for sustainable wheat production in the changing climate. Full article
(This article belongs to the Special Issue Crop Physiology and Stress)
Show Figures

Figure 1

Review

Jump to: Research

Review
Microplastics and Their Effect in Horticultural Crops: Food Safety and Plant Stress
Agronomy 2021, 11(8), 1528; https://doi.org/10.3390/agronomy11081528 - 30 Jul 2021
Viewed by 497
Abstract
The presence of micro and nanoplastics in the food chain constitutes an emergent multifactorial food safety and physiological stress problem, which must be approached with a strategic perspective since it affects public health when consuming products that have this pollutant, such as fish [...] Read more.
The presence of micro and nanoplastics in the food chain constitutes an emergent multifactorial food safety and physiological stress problem, which must be approached with a strategic perspective since it affects public health when consuming products that have this pollutant, such as fish and crustaceans, fruits, and vegetables. In this review, the authors present the results by scientists from different disciplines who are dedicated to discovering their chemical constitution and origin, the contents of these microparticles in edible plants, the contamination of water-irrigated soils, the mechanisms that concentrate microplastics in these soils, methods to determine them, contamination of freshwater sources of cities, and the negative effect of nano and microplastics on various food products and their detrimental impact on the environment. Recent findings of plant uptake mechanisms complement this, but more research is needed. Full article
(This article belongs to the Special Issue Crop Physiology and Stress)
Back to TopTop