Adaptive Fault-Tolerant Control Strategies for Uncertain Nonlinear Systems: Mitigating Actuator Faults

A special issue of Actuators (ISSN 2076-0825). This special issue belongs to the section "Control Systems".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 1526

Special Issue Editors


E-Mail Website
Guest Editor
School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
Interests: multi-agent system; nonlinear control; neural network; intelligent control

E-Mail Website
Co-Guest Editor
School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
Interests: distributed observers; multi-agent system; adaptive control; stochastic systems; robotics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With the rapid technological advancements in modern engineering control, the demands for performance and reliability have been escalating in complex systems such as aerospace vehicles, robotic systems, and industrial process controls. These systems often exhibit high degrees of nonlinearity and inevitably encounter various uncertainties (e.g., variations in model parameters and external disturbances) during their operations. More critically, actuators, as the direct control elements of system outputs, frequently experience failures, which have emerged as one of the pivotal factors impacting the stable operation and safety of these systems. Distinct from traditional uncertain nonlinear systems, when considering the diverse actuator failure models, it remains a formidable challenge to automatically adjust controller parameters or structures based on real-time system states during operation in order to counter the uncertainties in system parameters and external disturbances and to ensure that the system maintains a certain level of performance even in the face of failures. Given these considerations, this Special Issue aims to bring together researchers, scholars, and engineers to discuss and share their latest advancements, discoveries, and experiences in this field.

This Special Issue will include but is not limited to the following topics:

  • Nonlinear systems;
  • System modeling;
  • Neural networks;
  • Fuzzy system;
  • Stability analysis;
  • Multi-agent systems;
  • Adaptive fault-tolerant control;
  • Actuator failures;
  • Machine learning;
  • Intelligent control;
  • Model predictive control;
  • Robust adaptive control;

Industrial robots or mobile robots.

Dr. Jianhui Wang
Dr. Kairui Chen
Guest Editors

Zikai Hu
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Actuators is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nonlinear systems
  • multi-agent systems
  • adaptive fault-tolerant control
  • actuator failures
  • model predictive control
  • industrial robots or mobile robots

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 9592 KiB  
Article
A Rotational Order Vibration Reduction Method Using a Regular Non-Circular Pulley
by Shangbin Long, Yu Zhu, Zhihong Zhou, Fangrui Chen and Zisheng Li
Actuators 2025, 14(8), 371; https://doi.org/10.3390/act14080371 - 25 Jul 2025
Viewed by 209
Abstract
For transmission systems with regular order excitation, the order vibration will be conducted to each component of the system and affect the stability and service life of the system. A method with a regular non-circular active pulley is proposed in this paper, which [...] Read more.
For transmission systems with regular order excitation, the order vibration will be conducted to each component of the system and affect the stability and service life of the system. A method with a regular non-circular active pulley is proposed in this paper, which is used to counteract the regular order excitation and the regular load excitation. A toothed belt drive system with second-order excitation is taken as an example. According to the existing analytical model of the tooth belt drive system, the modeling process and analytical solution algorithm of the system are derived. Based on the coordinate transformation, the algorithms for any position of an elliptical pulley and the common tangent of the circular pulley are given. And the algorithm for the arc length of the elliptical pulley at any arc degree is proposed. The influence of the phase and eccentricity in the elliptical pulley on the dynamic performance of the system is analyzed. Then the experimental verification is carried out. This shows that this system can generate excitation opposite to the main order rotational vibration of the driving pulley and opposite to the load of the driven pulley. Under the combined effect of other load pulleys in the system, there will be an amplification phenomenon in its vibration response. Considering the decrease in the belt span tension and the decline in the performance of energy-absorbing components after long operation, the presented method can better maintain the stability of system performance. This method can provide new ideas for the vibration reduction optimization process of systems with first-order wave excitation. Full article
Show Figures

Figure 1

19 pages, 5751 KiB  
Article
Gyro-System for Guidance with Magnetically Suspended Gyroscope, Using Control Laws Based on Dynamic Inversion
by Romulus Lungu, Constantin-Adrian Mihai and Alexandru-Nicolae Tudosie
Actuators 2025, 14(7), 316; https://doi.org/10.3390/act14070316 - 25 Jun 2025
Viewed by 315
Abstract
The authors have designed a gyro-system for orientation (guidance) and stabilization, with two gimbals and a rotor in magnetic suspension (AMB—Active Magnetic Bearing) usable for self-guided rockets. The gyro-system (DGMSGG—double gimbal magnetic suspension gyro-system for guidance) orients and stabilizes the target coordinator’s axis [...] Read more.
The authors have designed a gyro-system for orientation (guidance) and stabilization, with two gimbals and a rotor in magnetic suspension (AMB—Active Magnetic Bearing) usable for self-guided rockets. The gyro-system (DGMSGG—double gimbal magnetic suspension gyro-system for guidance) orients and stabilizes the target coordinator’s axis (CT) and, at the same time, the AMB–rotor’s axis so that they overlap the guidance line (the target line). DGMSGG consists of two decoupled systems: one for canceling the AMB–rotor translations along the precession axes (induced by external disturbing forces), the other for canceling the AMB–rotor rotations relative to the CT-axis (induced by external disturbing moments) and, at the same time, for controlling the gimbals’ rotations, so that the AMB–rotor’s axis overlaps the guidance line. The nonlinear DGMSGG model is decomposed into two sub-models: one for the AMB–rotor’s translation, the other for the AMB–rotor’s and gimbals’ rotation. The second sub-model is described first by nonlinear state equations. This model is reduced to a second order nonlinear matrix—vector form with respect to the output vector. The output vector consists of the rotation angles of the AMB–rotor and the rotation angles of the gimbals. For this purpose, a differential geometry method, based on the use of the output vector’s gradient with respect to the nonlinear state functions, i.e., based on Lie derivatives, is used. This equation highlights the relative degree (equal to 2) with respect to the variables of the output vector and allows for the use of the dynamic inversion method in the design of stabilization and guidance controllers (of P.I.D.- and PD-types), as well as in the design of the related linear state observers. The controller of the subsystem intended for AMB–rotor’s translations control is chosen as P.I.D.-type, which leads to the cancellation of both its translations and its translation speeds. The theoretical results are validated through numerical simulations, using Simulink/Matlab models. Full article
Show Figures

Figure 1

20 pages, 820 KiB  
Article
Fixed-Time Adaptive Event-Triggered Control for Uncertain Nonlinear Systems Under Full-State Constraints
by Yue Zhang, Jietao Dai, Zhenzhang Liu, Ruizhi Tang, Guoxiong Zheng and Jianhui Wang
Actuators 2025, 14(5), 231; https://doi.org/10.3390/act14050231 - 5 May 2025
Cited by 1 | Viewed by 588
Abstract
The problem of adaptive event-triggered control for uncertain nonlinear systems with full-state constraints was investigated. State constraints can significantly affect system performance, especially when time-varying external disturbances are present, potentially leading to instability. Thus, a fixed-time disturbance observer was designed. It estimated unknown [...] Read more.
The problem of adaptive event-triggered control for uncertain nonlinear systems with full-state constraints was investigated. State constraints can significantly affect system performance, especially when time-varying external disturbances are present, potentially leading to instability. Thus, a fixed-time disturbance observer was designed. It estimated unknown uncertainties within a predetermined time. Meanwhile, an asymmetric barrier Lyapunov function was developed. It ensured the stability of the system state under constraints. Furthermore, to reduce the utilization rate of the system’s communication resources, an adaptive event-triggered control scheme was proposed, and an integrated control method was established to preset the convergence time of the system’s state error, greatly improving the convergence speed. Theoretical analysis and simulations demonstrated the effectiveness of the proposed approach. The results show that the system achieved stable control within a fixed time, even under full-state constraints and external disturbances, while using fewer communication resources. Full article
Show Figures

Figure 1

Back to TopTop