Journal Description
Ceramics
Ceramics
is an international, peer-reviewed, open access journal of ceramics science and engineering, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), and other databases.
- Journal Rank: JCR - Q2 (Materials Science, Ceramics) / CiteScore - Q2 (Materials Science (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 19.6 days after submission; acceptance to publication is undertaken in 3.7 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
2.0 (2024);
5-Year Impact Factor:
2.3 (2024)
Latest Articles
Cobalt Ferrite Nanoparticles: Highly Efficient Catalysts for the Biginelli Reaction
Ceramics 2025, 8(3), 102; https://doi.org/10.3390/ceramics8030102 - 6 Aug 2025
Abstract
►
Show Figures
This study introduces an efficient and sustainable catalytic system utilizing cobalt ferrite nanoparticles (CoFe2O4-NPs) for the synthesis of valuable 6-amino-2-oxo-4-phenyl (or 4-chlorophenyl)-1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives. Recognizing the limitations of traditional methods for the Biginelli reaction, we thoroughly characterized CoFe2O
[...] Read more.
This study introduces an efficient and sustainable catalytic system utilizing cobalt ferrite nanoparticles (CoFe2O4-NPs) for the synthesis of valuable 6-amino-2-oxo-4-phenyl (or 4-chlorophenyl)-1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives. Recognizing the limitations of traditional methods for the Biginelli reaction, we thoroughly characterized CoFe2O4-NPs, alongside individual iron oxide nanoparticles (Fe2O3-NPs) and cobalt oxide nanoparticles (CoO-NPs), using FTIR, XRD, TEM, SEM, XPS, TGA, and BET analysis. These characterizations revealed the unique structural, morphological, and physicochemical properties of CoFe2O4-NPs, including an optimized porous structure and significant bimetallic synergy between Fe and Co ions. Catalytic studies demonstrated that CoFe2O4-NPs significantly outperformed individual Fe2O3-NPs and CoO-NPs under mild conditions. While the latter only catalyzed the Knoevenagel condensation, CoFe2O4-NPs uniquely facilitated the complete Biginelli reaction. This superior performance is attributed to the synergistic electronic environment within CoFe2O4-NPs, which enhances reactant activation, intermediate stabilization, and proton transfer during the multi-step reaction. This work highlights the potential of CoFe2O4-NPs as highly efficient and selective nanocatalysts for synthesizing biologically relevant 1,2,3,4-tetrahydropyrimidines, offering a greener synthetic route in organic chemistry.
Full article
Open AccessArticle
The Effect of Frankincense and Myrrh on the Sealing Ability and Hardness of Glass Ionomer Cement
by
Hala Hanna, Nsar Azeez, Diyar Khalid Bakr and Media Saeed
Ceramics 2025, 8(3), 101; https://doi.org/10.3390/ceramics8030101 - 6 Aug 2025
Abstract
►▼
Show Figures
Efforts to enhance the mechanical and physicochemical properties of conventional glass ionomer cement (GIC) are ongoing. This study aimed to evaluate the effect of incorporating varying concentrations of frankincense and myrrh liquids into conventional GIC on its microhardness and sealing ability. Frankincense and
[...] Read more.
Efforts to enhance the mechanical and physicochemical properties of conventional glass ionomer cement (GIC) are ongoing. This study aimed to evaluate the effect of incorporating varying concentrations of frankincense and myrrh liquids into conventional GIC on its microhardness and sealing ability. Frankincense and myrrh liquids were prepared by dissolving 25 g of each ground resin in 50 mL of distilled water at 60 °C and allowing the solutions to stand for 8 h. Five experimental groups were evaluated: Group A (conventional GIC), Group B (15% frankincense-modified GIC), Group C (25% frankincense-modified GIC), Group D (15% myrrh-modified GIC), and Group E (25% myrrh-modified GIC). Microhardness was evaluated using a Vickers hardness tester, and sealing ability was evaluated via interfacial gap measurements using scanning electron microscopy (SEM). SEM analysis revealed that all modified GIC groups exhibited significantly smaller interfacial gap sizes (Groups B–E: 6.1, 5.22, 5.9, and 5.34 µm, respectively) compared to conventional GIC (Group A: 6.88 µm). However, there were no statistically significant differences in microhardness among the groups (p > 0.5). The incorporation of 15% and 25% concentrations of frankincense or myrrh liquids into conventional GIC significantly improved sealing ability without compromising hardness.
Full article

Figure 1
Open AccessReview
A Brief Review of Atomistic Studies on BaTiO3 as a Photocatalyst for Solar Water Splitting
by
Aisulu U. Abuova, Ulzhan Zh. Tolegen, Talgat M. Inerbaev, Mirat Karibayev, Balzhan M. Satanova, Fatima U. Abuova and Anatoli I. Popov
Ceramics 2025, 8(3), 100; https://doi.org/10.3390/ceramics8030100 - 4 Aug 2025
Abstract
Barium titanate (BaTiO3) has long been recognized as a promising photocatalyst for solar-driven water splitting due to its unique ferroelectric, piezoelectric, and electronic properties. This review provides a comprehensive analysis of atomistic simulation studies of BaTiO3, highlighting the role
[...] Read more.
Barium titanate (BaTiO3) has long been recognized as a promising photocatalyst for solar-driven water splitting due to its unique ferroelectric, piezoelectric, and electronic properties. This review provides a comprehensive analysis of atomistic simulation studies of BaTiO3, highlighting the role of density functional theory (DFT), ab initio molecular dynamics (MD), and classical all-atom MD in exploring its photocatalytic behavior, in line with various experimental findings. DFT studies have offered valuable insights into the electronic structure, density of state, optical properties, bandgap engineering, and other features of BaTiO3, while MD simulations have enabled dynamic understanding of water-splitting mechanisms at finite temperatures. Experimental studies demonstrate photocatalytic water decomposition and certain modifications, often accompanied by schematic diagrams illustrating the principles. This review discusses the impact of doping, surface modifications, and defect engineering on enhancing charge separation and reaction kinetics. Key findings from recent computational works are summarized, offering a deeper understanding of BaTiO3’s photocatalytic activity. This study underscores the significance of advanced multiscale simulation techniques for optimizing BaTiO3 for solar water splitting and provides perspectives on future research in developing high-performance photocatalytic materials.
Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
The Influence of Accumulated Radiolysis Products on the Mechanisms of High-Temperature Degradation of Two-Component Lithium-Containing Ceramics
by
Inesh E. Kenzhina, Saulet Askerbekov, Artem L. Kozlovskiy, Aktolkyn Tolenova, Sergei Piskunov and Anatoli I. Popov
Ceramics 2025, 8(3), 99; https://doi.org/10.3390/ceramics8030099 (registering DOI) - 3 Aug 2025
Abstract
One of the advantages of the EPR spectroscopy method in assessing structural defects caused by irradiation is the fact that using this method it is possible to determine not only the concentration dependences of the defect structure but to also establish their type,
[...] Read more.
One of the advantages of the EPR spectroscopy method in assessing structural defects caused by irradiation is the fact that using this method it is possible to determine not only the concentration dependences of the defect structure but to also establish their type, which is not possible with methods such as X-ray diffraction or scanning electron microscopy. Based on the data obtained, the role of variation in the ratio of components in Li4SiO4–Li2TiO3 ceramics on the processes of softening under high-dose irradiation with protons simulating the accumulation of hydrogen in the damaged layer, as well as the concentration of structural defects in the form of oxygen vacancies and radiolysis products on the processes of high-temperature degradation of ceramics, was determined. It was found that the main changes in the defect structure during the prolonged thermal exposure of irradiated samples are associated with the accumulation of oxygen vacancies, the density of which was estimated by the change in the intensity of singlet lithium, characterizing the presence of E-centers. At the same time, it was found that the formation of interphase boundaries in the structure of Li4SiO4–Li2TiO3 ceramics leads to the inhibition of high-temperature degradation processes in the case of post-radiation thermal exposure for a long time. Also, during the conducted studies, the role of thermal effects on the structural damage accumulation rate in Li4SiO4–Li2TiO3 ceramics was determined in the case when irradiation is carried out at different temperatures. During the experiments, it was determined that the main contribution of thermal action in the process of proton irradiation at a fluence of 5 × 1017 proton/cm2 is an increase in the concentration of radiolysis products, described by changes in the intensities of spectral maxima, characterized by the presence of defects such as ≡Si–O, SiO43− and Ti3+ defects.
Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
►▼
Show Figures

Figure 1
Open AccessEditorial
Recent Technological Advances in Transparent Ceramics
by
Yiquan Wu
Ceramics 2025, 8(3), 98; https://doi.org/10.3390/ceramics8030098 (registering DOI) - 1 Aug 2025
Abstract
Transparent and translucent ceramics (TCs) represent a relatively recent development in the long history of ceramics—while silicate ceramics have existed for approximately 30,000 years, transparent ceramics have been developed only within the past 65 years [...]
Full article
(This article belongs to the Special Issue Transparent Ceramics—a Theme Issue in Honor of Dr. Adrian Goldstein)
►▼
Show Figures

Figure 1
Open AccessArticle
Dry Machining of AISI 316 Steel Using Textured Ceramic Tool Inserts: Investigation of Surface Roughness and Chip Morphology
by
Shailendra Pawanr and Kapil Gupta
Ceramics 2025, 8(3), 97; https://doi.org/10.3390/ceramics8030097 (registering DOI) - 31 Jul 2025
Abstract
►▼
Show Figures
Stainless steel is recognized for its excellent durability and anti-corrosion properties, which are essential qualities across various industrial applications. The machining of stainless steel, particularly under a dry environment to attain sustainability, poses several challenges. The poor heat conductivity and high ductility of
[...] Read more.
Stainless steel is recognized for its excellent durability and anti-corrosion properties, which are essential qualities across various industrial applications. The machining of stainless steel, particularly under a dry environment to attain sustainability, poses several challenges. The poor heat conductivity and high ductility of stainless steel results in poor heat distribution, accelerating tool wear and problematic chip formation. To mitigate these challenges, the implementation of surface texturing has been identified as a beneficial strategy. This study investigates the impact of wave-type texturing patterns, developed on the flank surface of tungsten carbide ceramic tool inserts, on the machinability of AISI 316 stainless steel under dry cutting conditions. In this investigation, chip morphology and surface roughness were used as key indicators of machinability. Analysis of Variance (ANOVA) was conducted for chip thickness, chip thickness ratio, and surface roughness, while Taguchi mono-objective optimization was applied to chip thickness. The ANOVA results showed that linear models accounted for 71.92%, 83.13%, and 82.86% of the variability in chip thickness, chip thickness ratio, and surface roughness, respectively, indicating a strong fit to the experimental data. Microscopic analysis confirmed a substantial reduction in chip thickness, with a minimum observed value of 457.64 µm. The corresponding average surface roughness Ra value 1.645 µm represented the best finish across all experimental runs, highlighting the relationship between thinner chips and enhanced surface quality. In conclusion, wave textures on the cutting tool’s flank face have the potential to facilitate the dry machining of AISI 316 stainless steel to obtain favorable machinability.
Full article

Graphical abstract
Open AccessArticle
Effect of Diatomite Content in a Ceramic Paste for Additive Manufacturing
by
Pilar Astrid Ramos Casas, Andres Felipe Rubiano-Navarrete, Yolanda Torres-Perez and Edwin Yesid Gomez-Pachon
Ceramics 2025, 8(3), 96; https://doi.org/10.3390/ceramics8030096 (registering DOI) - 31 Jul 2025
Abstract
►▼
Show Figures
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable
[...] Read more.
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable or sustainably sourced components. This study evaluates the effect of diatomite content in a ceramic paste composed of carboxymethyl cellulose, kaolinite, and feldspar on its extrusion behavior and thermal conductivity, with additional analysis of its implications for microstructure, mechanical properties, and thermal performance. Four ceramic pastes were prepared with diatomite additions of 0, 10, 30, and 60% by weight. Thermal conductivity, extrusion behavior, morphology, and distribution were examined using scanning electron microscopy (SEM), while thermal degradation was assessed through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results show that increasing diatomite content leads to a reduction in thermal conductivity, which ranged from 0.719 W/(m·°C) for the control sample to 0.515 W/(m·°C) for the 60% diatomite sample, as well as an improvement in extrusion behavior. The ceramic paste demonstrated adequate extrusion performance for 3D printing at diatomite contents above 30%. These findings lay the groundwork for future research and optimization in the development of functional ceramic pastes for advanced manufacturing applications.
Full article

Figure 1
Open AccessArticle
Effect of Kr15+ Ion Irradiation on the Structure and Properties of PSZ Ceramics
by
Madi Abilev, Almira Zhilkashinova, Leszek Łatka, Alexandr Pavlov, Igor Karpov, Leonid Fedorov and Sergey Gert
Ceramics 2025, 8(3), 95; https://doi.org/10.3390/ceramics8030095 (registering DOI) - 31 Jul 2025
Abstract
►▼
Show Figures
This article deals with the effect of Kr15+ ion irradiation on the structure and properties of partially stabilized zirconium dioxide (ZrO2 + 3 mol. % Y2O3) ceramics. Ion irradiation is used to simulate radiation damage typical of
[...] Read more.
This article deals with the effect of Kr15+ ion irradiation on the structure and properties of partially stabilized zirconium dioxide (ZrO2 + 3 mol. % Y2O3) ceramics. Ion irradiation is used to simulate radiation damage typical of operating conditions in nuclear reactors and space technology. It is shown that with an increase in the irradiation fluence, point defects are formed, dislocations accumulate, and the crystal lattice parameters change. At high fluences (>1013 ions/cm2), a phase transition of the monoclinic (m-ZrO2) phase to the tetragonal (t-ZrO2) and cubic (c-ZrO2) modifications is observed, which is accompanied by a decrease in the crystallite size and an increase in internal stresses. Changes in the mechanical properties of the material were also observed: at moderate irradiation fluences, strengthening is observed due to the formation of dislocation structures, whereas at high fluences (>1014 ions/cm2), a decrease in strength and a potential amorphization of the structure begins. The change in the phase composition was confirmed by X-ray phase analysis and Raman spectroscopy. The results obtained allow a deeper understanding of the mechanisms of radiation-induced phase transformations in stabilized ZrO2 and can be used in the development of ceramic materials with increased radiation resistance.
Full article

Figure 1
Open AccessReview
Effects of Photobiomodulation in Association with Biomaterials on the Process of Guided Bone Regeneration: An Integrative Review
by
Matheus Bento Medeiros Moscatel, Bruna Trazzi Pagani, Beatriz Flávia de Moraes Trazzi, Carlos Henrique Bertoni Reis, Camila Aparecida Ribeiro, Daniela Vieira Buchaim and Rogerio Leone Buchaim
Ceramics 2025, 8(3), 94; https://doi.org/10.3390/ceramics8030094 - 24 Jul 2025
Abstract
►▼
Show Figures
Photobiomodulation (PBM) has been widely studied for its regenerative and anti-inflammatory properties. Its application, combined with biomaterials, is emerging as a promising strategy for promoting tissue regeneration. Considering the diversity of available evidence, this study conducted an integrative literature review, aiming to critically
[...] Read more.
Photobiomodulation (PBM) has been widely studied for its regenerative and anti-inflammatory properties. Its application, combined with biomaterials, is emerging as a promising strategy for promoting tissue regeneration. Considering the diversity of available evidence, this study conducted an integrative literature review, aiming to critically analyze and synthesize the effects of PBM on bone tissue, particularly its potential role as an adjunct in guided bone regeneration (GBR) procedures. To ensure an integrative approach, studies with different methodological designs were included, encompassing both preclinical and clinical research. The article search was performed in the digital databases PubMed/MEDLINE, Scopus, and Web of Science, using the following search terms: “Photobiomodulation therapy” AND “guided bone regeneration”. The search was conducted from November 2024 to January 2025. A total of 85 articles were found using the presented terms; after checking the results, 11 articles were selected for this study. The remaining articles were excluded because they did not fit the proposed inclusion and exclusion criteria. Studies to date have shown preclinical models that demonstrated increased bone-volume fraction and accelerating healing. Although it has exciting potential in bone regeneration, offering a non-invasive and promising approach to promote healing and repair of damaged bone tissue, the clinical application of PBM faces challenges, such as the lack of consensus on the ideal treatment parameters. Calcium phosphate ceramics were one of the most used biomaterials in the studied associations. Further well-designed studies are necessary to clarify the effectiveness, optimal parameters, and clinical relevance of PBM in bone regeneration, in order to strengthen the current evidence base and guide its potential future use in clinical practice.
Full article

Figure 1
Open AccessArticle
Transforming Rice Husk Ash into Road Safety: A Sustainable Approach to Glass Microsphere Production
by
Ingrid Machado Teixeira, Juliano Pase Neto, Acsiel Budny, Luis Enrique Gomez Armas, Chiara Valsecchi and Jacson Weber de Menezes
Ceramics 2025, 8(3), 93; https://doi.org/10.3390/ceramics8030093 - 24 Jul 2025
Abstract
Glass microspheres are essential components in horizontal road markings due to their retroreflective properties, enhancing visibility and safety under low-light conditions. Traditionally produced from soda-lime glass made with high-purity silica from sand, their manufacturing raises environmental concerns amid growing global sand scarcity. This
[...] Read more.
Glass microspheres are essential components in horizontal road markings due to their retroreflective properties, enhancing visibility and safety under low-light conditions. Traditionally produced from soda-lime glass made with high-purity silica from sand, their manufacturing raises environmental concerns amid growing global sand scarcity. This study explores the viability of rice husk ash (RHA)—a high-silica byproduct of rice processing—as a sustainable raw material for microsphere fabrication. A glass composition containing 70 wt% SiO2 was formulated using RHA and melted at 1500 °C. Microspheres were produced through flame spheroidization and characterized following the Brazilian standard NBR 16184:2021 for Type IB beads. The RHA-derived microspheres exhibited high sphericity, appropriate size distribution (63–300 μm), density of 2.42 g/cm3, and the required acid resistance. UV-Vis analysis confirmed their optical transparency, and the refractive index was measured as 1.55 ± 0.03. Retroreflectivity tests under standardized conditions revealed performance comparable to commercial counterparts. These results demonstrate the technical feasibility of replacing conventional silica with RHA in glass microsphere production, aligning with circular economy principles and promoting sustainable infrastructure. Given Brazil’s significant rice production and corresponding RHA availability, this approach offers both environmental and socio-economic benefits for road safety and material innovation.
Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Effects of Translucency-Enhancing Coloring Liquids on the Mechanical Properties of 3Y- and 4Y-TZP Zirconia Ceramics
by
Andreas Pfeffer, Sebastian Hahnel, Angelika Rauch and Martin Rosentritt
Ceramics 2025, 8(3), 92; https://doi.org/10.3390/ceramics8030092 - 22 Jul 2025
Abstract
The aim of translucency-enhancing liquids (TEL) is to locally influence the phase composition of zirconia in order to increase its translucency. This study aimed to determine the influence of TEL on 3Y- and 4Y-TZP zirconia concerning roughness, hardness, wear, flexural strength, dynamic stability
[...] Read more.
The aim of translucency-enhancing liquids (TEL) is to locally influence the phase composition of zirconia in order to increase its translucency. This study aimed to determine the influence of TEL on 3Y- and 4Y-TZP zirconia concerning roughness, hardness, wear, flexural strength, dynamic stability and fracture force of fixed dental prostheses after thermal cycling and mechanical loading. Two zirconia materials (4Y-TZP; 3Y-TZP-LA, n = 8 per material and test) were investigated with and without prior application of TEL. Two-body wear tests were performed in a pneumatic pin-on-block design (50 N, 120,000 cycles, 1.6 Hz) with steatite balls (r = 1.5 mm) as antagonists. Mean and maximum vertical loss as well as roughness (Ra, Rz) were measured with a 3D laser-scanning microscope (KJ 3D, Keyence, J). Antagonist wear was determined as percent area of the projected antagonist area. Martens hardness (HM; ISO 14577-1) and biaxial flexural strength (BFS; ISO 6872) were investigated. The flexural fatigue limit BFSdyn was determined under cyclic loading in a staircase approach with a piston-on-three-ball-test. Thermal cycling and mechanical loading (TCML: 2 × 3000 × 5 °C/55 °C, 2 min/cycle, H2O dist., 1.2 × 106 force á 50 N) was performed on four-unit fixed dental prostheses (FDPs) (n = 8 per group) and the fracture force after TCML was determined. Statistics: ANOVA, Bonferroni test, Kaplan–Meier survival, Pearson correlation; α = 0.05. TEL application significantly influences roughness, hardness, biaxial flexural strength, dynamic performance, as well as fracture force after TCML in 3Y-TZP. For 4Y-TZP, a distinct influence of TEL was only identified for BFS. The application of TEL on 3Y- or 4Y-TZP did not affect wear. TEL application has a strong effect on the mechanical properties of 3Y-TZP and minor effects on 4Y-TZP. All effects of the TEL application are of a magnitude that is unlikely to restrict clinical application.
Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Fabrication of Novel Hybrid Al-SiC-ZrO2 Composites via Powder Metallurgy Route and Intelligent Modeling for Their Microhardness
by
Pallab Sarmah, Shailendra Pawanr and Kapil Gupta
Ceramics 2025, 8(3), 91; https://doi.org/10.3390/ceramics8030091 - 19 Jul 2025
Abstract
►▼
Show Figures
In this work, the development of Al-based metal matrix composites (MMCs) is achieved using hybrid SiC and ZrO2 reinforcement particles for automotive applications. Powder metallurgy (PM) is employed with various combinations of important process parameters for the fabrication of MMCs. MMCs were
[...] Read more.
In this work, the development of Al-based metal matrix composites (MMCs) is achieved using hybrid SiC and ZrO2 reinforcement particles for automotive applications. Powder metallurgy (PM) is employed with various combinations of important process parameters for the fabrication of MMCs. MMCs were characterized using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and a microhardness study. All XRD graphs adequately exhibit Al, SiC, and ZrO2 peaks, indicating that the hybrid MMC products were satisfactorily fabricated with appropriate mixing and sintering at all the considered fabrication conditions. Also, no impurity peaks were observed, confirming high composite purity. MMC products in all the XRD patterns, suitable for the desired applications. According to the SEM investigation, SiC and ZrO2 reinforcement components are uniformly scattered throughout Al matrix in all produced MMC products. The occurrence of Al, Si, C, Zr, and O in EDS spectra demonstrates the effectiveness of composite ball milling and sintering under all manufacturing conditions. Moreover, an increase in interfacial bonding of fabricated composites at a higher sintering temperature indicated improved physical properties of the developed MMCs. The highest microhardness value is 86.6 HVN amid all the fabricated composites at 7% silica, 14% zirconium dioxide, 500° sintering temperature, 90 min sintering time, and 60 min milling time. An integrated Particle Swarm Optimization–Support Vector Machine (PSO-SVM) model was developed to predict microhardness based on the input parameters. The model demonstrated strong predictive performance, as evidenced by low values of various statistical metrics for both training and testing datasets, highlighting the PSO-SVM model’s robustness and generalization capability. Specifically, the model achieved a coefficient of determination of 0.995 and a root mean square error of 0.920 on the training set, while on the testing set, it attained a coefficient of determination of 0.982 and a root mean square error of 1.557. These results underscore the potential of the PSO-SVM framework, which can be effectively leveraged to optimize process parameters for achieving targeted microhardness levels for the developed Al-SiC-ZrO2 Composites.
Full article

Figure 1
Open AccessArticle
Control of the SiC Polytypes in SiC Bonded Diamond Materials
by
Mathias Herrmann, Jesus Andres Quintana Freire, Björn Matthey, Steffen Kunze and Sören Höhn
Ceramics 2025, 8(3), 90; https://doi.org/10.3390/ceramics8030090 - 18 Jul 2025
Abstract
Silicon carbide-bonded diamond materials produced by pressureless reaction infiltration of diamond preforms have high wear resistance and thermal conductivity, making them ideal for a range of industrial applications. During infiltration, the Si is typically converted to cubic β-SiC. The aim of the work
[...] Read more.
Silicon carbide-bonded diamond materials produced by pressureless reaction infiltration of diamond preforms have high wear resistance and thermal conductivity, making them ideal for a range of industrial applications. During infiltration, the Si is typically converted to cubic β-SiC. The aim of the work was to investigate the extent to which the formation of hexagonal α-SiC can be achieved by adding α-SiC or AlN nuclei to the preform. Detailed microstructural investigations using XRD, high-resolution FE-SEM, and EBSD analyses show that both AlN and SiC serve as nuclei for α-SiC. Regardless of this, a large proportion of β-SiC forms on the surface of the diamonds. However, the added nuclei change the structure of the SiC framework that forms.
Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Synergistic Effects of SiCw and Ni Addition on the Densification and Mechanical Properties of (M0.2Ti0.2Ta0.2V0.2Nb0.2)B2 (M=Hf, Zr, or Cr) High-Entropy Ceramics
by
Hongya Wu, Jianxin Sun, Jiaqi Zhang, Junshuai Chen, Zhigang Yang, Yubo Gong, Guoqiang Qin, Gang Yu and Shengya He
Ceramics 2025, 8(3), 89; https://doi.org/10.3390/ceramics8030089 - 18 Jul 2025
Abstract
The improvement of densification and fracture toughness in high-entropy ceramics is important to realizing their practical applications. In this study, SiC whiskers and metal Ni additions were incorporated to solve these problems of high-entropy boride ceramics. The influence of sintering temperatures (1450–1650 °C)
[...] Read more.
The improvement of densification and fracture toughness in high-entropy ceramics is important to realizing their practical applications. In this study, SiC whiskers and metal Ni additions were incorporated to solve these problems of high-entropy boride ceramics. The influence of sintering temperatures (1450–1650 °C) on the densification, microstructure, hardness, fracture toughness, and bending strength of (M0.2Ti0.2Ta0.2V0.2Nb0.2)B2-SiCw-Ni (M=Hf, Zr, or Cr) composites prepared by hot-pressing technology were studied. Results showed that when SiC whiskers and metal Ni additions were used as additives, increasing sintering temperatures from 1450 to 1600 °C promoted the densification of high-entropy boride ceramics. This was mainly attributed to the high sintering driving force. However, when the temperature further increased to 1650 °C, their densification behavior decreased. At a sintering temperature of 1600 °C, these high-entropy borides ceramics all had the highest densification behavior, leading to their high hardness and fracture toughness. The highest relative density was 96.3%, the highest hardness was 22.02 GPa, and the highest fracture toughness was 13.25 MPa·m1/2, which was improved by the co-function of SiC whiskers and plastic metal Ni. Meanwhile, in the adopted sintering temperature range of 1450 to 1650 °C, the highest bending strength at room temperature of these high-entropy boride ceramics could reach 320.8 MPa. Therefore, this research offers an effective densification, strengthening, and toughening method for high-entropy boride composites at a low sintering temperature.
Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Engineering Ceramics)
►▼
Show Figures

Figure 1
Open AccessArticle
Ferroelectric and Piezoelectric Properties of (Mg1/3Nb2/3)4+-Doped Bismuth Sodium Titanate Ceramics
by
Yonggang Zhao, Ning Yang, Yi Chen, Xingting Li, Luyao Wang, Peng Wang and Guangzhi Dong
Ceramics 2025, 8(3), 88; https://doi.org/10.3390/ceramics8030088 - 13 Jul 2025
Abstract
Lead-free (Bi1/2Na1/2)(Ti1−x(Mg1/3Nb2/3)x)O3 ceramics were synthesized using the solid-phase method, and the effects of varying (Mg1/3Nb2/3)4+ content, substituting for Ti4+ ions at the B-site of
[...] Read more.
Lead-free (Bi1/2Na1/2)(Ti1−x(Mg1/3Nb2/3)x)O3 ceramics were synthesized using the solid-phase method, and the effects of varying (Mg1/3Nb2/3)4+ content, substituting for Ti4+ ions at the B-site of the BNT perovskite lattice, on piezoelectric performance were systematically investigated. The influence of sintering temperature on both piezoelectric and ferroelectric properties was also explored, revealing that sintering temperature significantly affects both the microstructure and the electrical properties of the ceramics. The results indicate that the incorporation of (Mg1/3Nb2/3)4+ significantly enhances the piezoelectric and ferroelectric properties of BNT ceramics. Specifically, a maximum piezoelectric constant of 91 pC/N was achieved at a sintering temperature of 1160 °C and a doping concentration of x = 0.01. By comparing the ferroelectric properties across different doping levels and sintering temperatures, this study provides valuable insights for further design and process optimization of BNT-based piezoelectric materials.
Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Structural and Dielectric Impedance Studies of Mixed Ionic–Electronic Conduction in SrLaFe1−xMnxTiO6 (x = 0, 0.33, 0.67, and 1.0) Double Perovskites
by
Abdelrahman A. Elbadawi, Elsammani A. Shokralla, Mohamed A. Siddig, Obaidallah A. Algethami, Abdullah Ahmed Alghamdi and Hassan H. E. Idris
Ceramics 2025, 8(3), 87; https://doi.org/10.3390/ceramics8030087 - 7 Jul 2025
Abstract
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor
[...] Read more.
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor solid-state reaction in air at 1250 °C. The purity phase and crystal structures of perovskite compounds were determined by means of the standard Rietveld refinement method using the FullProf suite. The best fitting results showed that SrLaFeTiO6−δ was orthorhombic with space group Pnma, and both SrLaFe0.67Mn0.33TiO6−δ and SrLaFe0.33Mn0.67TiO6−δ were cubic structures with space group Fm3m, while SrLaMnTiO6−δ was tetragonal with a I/4m space group. The charge density maps obtained for these structures indicated that the compounds show an ionic and mixed ionic–electronic conduction. The dielectric impedance measurements were carried out in the range of 20 Hz to 1 MHz, and the analysis showed that there is more than one relaxation mechanism of Debye type. Doping with Mn was found to reduce the dielectric impedance of the samples, and the major contribution to the dielectric impedance was established to change from a capacitive for SrLaFeTiO6−δ to a resistive for SrLaMnTiO6−δ. The fall in values of electrical resistance may be related to the possible occurrence of the double exchange (DEX) mechanism among the Mn ions, provided there is oxygen deficiency in the samples. DC-resistivity measurements revealed that SrLaFeTiO6−δ was an insulator while SrLaMnTiO6−δ was showing a semiconductor–metallic transition at ~250 K, which is in support of the DEX interaction. The dielectric impedance of SrLaFe0.67Mn0.33TiO6−δ was found to be similar to that of (La,Sr)(Co,Fe)O3-δ, the mixed ionic–electronic conductor (MIEC) model. The occurrence of a mixed ionic–electronic state in these compounds may qualify them to be used in free lead solar cells and energy storage technology.
Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Improving of Thermoelectric Efficiency of Layered Sodium Cobaltite Through Its Doping by Different Metal Oxides
by
Natalie S. Krasutskaya, Ekaterina A. Chizhova, Julia A. Zizika, Alexey V. Buka, Hongchao Wang and Andrei I. Klyndyuk
Ceramics 2025, 8(3), 86; https://doi.org/10.3390/ceramics8030086 - 5 Jul 2025
Abstract
►▼
Show Figures
Na0.89Co0.90Me0.10O2 (Me = Cr, Ni, Mo, W, Pb, and Bi) ceramic samples were prepared using a solid-state reaction method, and their crystal structure, microstructure, and electrical, thermal, and thermoelectric properties were investigated. The effect
[...] Read more.
Na0.89Co0.90Me0.10O2 (Me = Cr, Ni, Mo, W, Pb, and Bi) ceramic samples were prepared using a solid-state reaction method, and their crystal structure, microstructure, and electrical, thermal, and thermoelectric properties were investigated. The effect of the nature of the doping metal (Me = Cr, Ni, Mo, W, and Bi) on the structure and properties of layered sodium cobaltite Na0.89CoO2 was analyzed. The largest Seebeck coefficient (616 μV/K at 1073 K) and figure-of-merit (1.74 at 1073 K) values among the samples studied were demonstrated by the Na0.89Co0.9Bi0.1O2 solid solution, which was also characterized by the lowest value of the dimensionless relative self-compatibility factor of about 8% within the 673–873 K temperature range. The obtained results demonstrate that doping of layered sodium cobaltite by transition and heavy metal oxides improves its microstructure and thermoelectric properties, which shows the prospectiveness of the used doping strategy for the development of new thermoelectric oxides with enhanced thermoelectric characteristics. It was also shown that samples with a higher sodium content (Na:Co = 0.89:1) possessed higher chemical and thermal stability than those with a lower sodium content (Na:Co = 0.55:1), which makes them more suitable for practical applications.
Full article

Graphical abstract
Open AccessArticle
Effect of Ni2+ Doping on the Crystal Structure and Properties of LiAl5O8 Low-Permittivity Microwave Dielectric Ceramics
by
Xuekai Lan, Huatao Tang, Bairui Chen and Bin Tian
Ceramics 2025, 8(3), 85; https://doi.org/10.3390/ceramics8030085 - 4 Jul 2025
Abstract
Low-permittivity microwave dielectric ceramics are essential for high-frequency communication and radar systems, as they minimize signal delay and interference, thereby enabling compact and high-performance devices. In this study, LiAl5−xNixO8−0.5x (x = 0.1–0.5) ceramics were synthesized
[...] Read more.
Low-permittivity microwave dielectric ceramics are essential for high-frequency communication and radar systems, as they minimize signal delay and interference, thereby enabling compact and high-performance devices. In this study, LiAl5−xNixO8−0.5x (x = 0.1–0.5) ceramics were synthesized via a solid-state reaction method to investigate the effects of Ni2+ substitution on crystal structure, microstructure, and dielectric properties. X-ray diffraction and Rietveld refinement reveal a phase transition from the P4332 to the Fd m spinel structure at x ≈ 0.3, accompanied by a systematic increase in the lattice parameter (7.909–7.975 Å), attributed to the larger ionic radius of Ni2+ compared to Al3+. SEM analysis confirms dense microstructures with relative densities exceeding 95% and grain size increases from less than 1 μm at x = 0.1 to approximately 2 μm at x = 0.5. Dielectric measurements show a decrease in permittivity (εr) from 8.24 to 7.77 and in quality factor (Q × f) from 34,605 GHz to 20,529 GHz with increasing Ni content, while the temperature coefficient of the resonant frequency (τf) shifts negatively from −44.8 to −69.1 ppm/°C. Impedance spectroscopy indicates increased conduction losses and reduced activation energy with higher Ni2+ concentrations.
Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Study on the Absorbing Properties of V-Doped MoS2
by
Jiang Zou and Quan Xie
Ceramics 2025, 8(3), 84; https://doi.org/10.3390/ceramics8030084 - 2 Jul 2025
Abstract
This study employed a hydrothermal method to prepare V-doped MoS2. The influence of varying filler ratios (30 wt%, 40 wt%, 50 wt%) on its absorption properties was analyzed. For annealing studies, a precursor powder with a 40 wt% filler ratio was
[...] Read more.
This study employed a hydrothermal method to prepare V-doped MoS2. The influence of varying filler ratios (30 wt%, 40 wt%, 50 wt%) on its absorption properties was analyzed. For annealing studies, a precursor powder with a 40 wt% filler ratio was heat-treated at 600 °C for 2 h. The results obtained through characterization and testing indicate that the unannealed 40 wt% filler sample demonstrates superior absorption performance, with minimum reflection loss (RLmin) of −32.24 dB, an effective absorption bandwidth (EAB) of 4.40 GHz, and 99.9% electromagnetic (EM) wave attenuation. However, upon subjecting the sample with a 40 wt% filling ratio to annealing treatment, a notable decrease in impedance matching degree was observed, and regions with impedance matching values close to 1 were no longer present. Consequently, it can be concluded that at a filling ratio of 40 wt%, the sample’s excellent attenuation coefficient in conjunction with its good impedance matching collectively contribute to its superior comprehensive absorption performance.
Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Sustainable Use of Gypsum Waste for Applications in Soil–Cement Bricks: Mechanical, Environmental, and Durability Performance
by
Elvia Soraya Santos Nascimento, Herbet Alves de Oliveira, Cochiran Pereira dos Santos, Maria de Andrade Gomes, Mário Ernesto Giroldo Valerio and Zélia Soares Macedo
Ceramics 2025, 8(3), 83; https://doi.org/10.3390/ceramics8030083 - 1 Jul 2025
Abstract
This study investigates the use of gypsum waste from civil construction as a partial substitute for cement in soil–cement formulations, aiming to produce eco-friendly bricks aligned with circular economy principles. Formulations were prepared using a 1:8 cement–soil ratio, with gypsum replacing cement in
[...] Read more.
This study investigates the use of gypsum waste from civil construction as a partial substitute for cement in soil–cement formulations, aiming to produce eco-friendly bricks aligned with circular economy principles. Formulations were prepared using a 1:8 cement–soil ratio, with gypsum replacing cement in proportions ranging from 5% to 40%. The raw materials were characterized in terms of chemical composition, crystalline phases, plasticity, and thermal behavior. Specimens, molded by uniaxial pressing into cylindrical bodies and cured for either 7 or 28 days, were evaluated for compressive strength, water absorption, durability, and microstructure. Water absorption remained below 20% in all samples, with an average value of 16.20%. Compressive strength after 7 days exhibited a slight reduction with increasing gypsum content, ranging from 16.36 MPa (standard formulation) to 13.74 MPa (40% gypsum), all meeting the quality standards. After 28 days of curing, the formulation containing 10% gypsum achieved the highest compressive strength (26.7 MPa), surpassing the reference sample (25.2 MPa). Mass loss during wetting–drying cycles remained within acceptable limits for formulations incorporating up to 20% gypsum. Notably, samples with 5% and 10% gypsum demonstrated superior mechanical performance, while the 20% formulation showed performance comparable to the standard formulation. These findings indicate that replacing up to 20% of cement with gypsum waste is a technically and environmentally viable approach, supporting sustainable development, circular economy, and reduction of construction-related environmental impacts.
Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Materials, Ceramics, J. Compos. Sci.
New Advances in High-Performance Structural Ceramics and Their Composites
Topic Editors: Amparo Borrell, Rut Benavente, Rujie HeDeadline: 31 March 2026
Topic in
Applied Nano, Ceramics, Crystals, Energies, Materials
High Performance Ceramic Functional Materials
Topic Editors: Letao Yang, Hua Hao, Qinghu Guo, Zhonghua YaoDeadline: 1 June 2026

Conferences
Special Issues
Special Issue in
Ceramics
Ceramics Containing Active Molecules for Biomedical Applications
Guest Editors: Pedro Faia, Evando Santos AraújoDeadline: 31 October 2025
Special Issue in
Ceramics
The Production Processes and Applications of Geopolymers, 2nd Edition
Guest Editors: Kinga Korniejenko, Katarzyna Łoś, Aleksandar NikolovDeadline: 15 November 2025
Special Issue in
Ceramics
Ceramic Materials for Industrial Decarbonization
Guest Editors: James G. Hemrick, Edgar Lara-CurzioDeadline: 30 November 2025
Special Issue in
Ceramics
Hybrid Materials for Biomedical Applications
Guest Editor: Russell GiordanoDeadline: 30 November 2025