An Investigation of the Mechanical Characteristics of Four CAD-CAM Monolithic Zirconia Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.2. Sample Preparations
2.3. Flexural Strength and Elastic Modulus Testing
2.4. Vickers Microhardness Testing
2.5. Statistical Analysis
3. Results
3.1. Flexural Strength
3.2. Elastic Modulus
3.3. Vickers Microhardness
4. Discussion
4.1. Flexural Strength
4.2. Elastic Modulus
4.3. Vickers Microhardness
4.4. Clinical Implications and Recommendations
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miura, S.; Fujita, T.; Fujisawa, M. Zirconia in fixed prosthodontics: A review of the literature. Odontology 2025, 113, 466–487. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Keul, C.; Eichberger, M.; Figge, D.; Edelhoff, D.; Lümkemann, N. Three generations of Zirconia: From veneered to monolithic. Part I. Quintessence Int. 2017, 48, 369–380. [Google Scholar]
- Abu-Naba’a, L.A. A narrative review of recent finite element studies reporting references for elastic properties of Zirconia dental ceramics. Ceramics 2023, 6, 898–911. [Google Scholar] [CrossRef]
- Kontonasaki, E.; Rigos, A.E.; Ilia, C.; Istantsos, T. Monolithic Zirconia: An update to current knowledge. Optical properties, wear, and clinical performance. Dent. J. 2019, 7, 90. [Google Scholar] [CrossRef]
- Burgess, J.O. Zirconia: The material, its evolution, and composition. Compend. Contin. Educ. Dent. 2018, 39 (Suppl. 4), 4–8. [Google Scholar] [PubMed]
- Zhang, Y.; Lawn, B.R. Novel Zirconia materials in dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Raigrodski, A.J.; Chung, K.H.; Flinn, B.D.; Dogan, S.; Mancl, L.A. A comparative evaluation of the translucency of Zirconias and lithium disilicate for monolithic restorations. J. Prosthet. Dent. 2016, 116, 257–263. [Google Scholar] [CrossRef]
- Ziyad, T.A.; Abu-Naba’a, L.A.; Almohammed, S.N. Optical properties of CAD-CAM monolithic systems compared: Three multi-layered Zirconia and one lithium disilicate system. Heliyon 2021, 7, e08151. [Google Scholar] [CrossRef]
- Yavuz, A.; Büyükerkmen, E.B. Fracture resistance of CAD/CAM monolithic Zirconia crowns supported by titanium and Ti-base abutments: The effect of chewing simulation and thermocyclic aging. Int. J. Oral Maxillofac. Implant. 2023, 38, 328–333. [Google Scholar] [CrossRef]
- Kontonasaki, E.; Giasimakopoulos, P.; Rigos, A.E. Strength and aging resistance of monolithic Zirconia: An update to current knowledge. Jpn. Dent. Sci. Rev. 2020, 56, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Bhochhibhoya, A. Translucent monolithic, multi-layered Zirconia: Matching esthetics with strength. J. Nepal. Prosthodont. Soc. 2022, 5, 55730. [Google Scholar] [CrossRef]
- Felberg, R.V.; Bassani, R.; Pereira, G.K.R.; Bacchi, A.; Silva-Sousa, Y.T.C.; Gomes, E.A.; Sarkis-Onofre, R.; Spazzin, A.O. Restorative possibilities using Zirconia ceramics for single crowns. Braz. Dent. J. 2019, 30, 446–452. [Google Scholar] [CrossRef]
- ISO 6872:2015; Dentistry—Ceramic Materials. International Organization for Standardization: Geneva, Switzerland, 2015.
- Pjetursson, B.E.; Valente, N.A.; Strasding, M.; Zwahlen, M.; Liu, S.; Sailer, I. A systematic review of the survival and complication rates of Zirconia-ceramic and metal-ceramic single crowns. Clin. Oral Implant. Res. 2018, 29 (Suppl. S16), 199–214. [Google Scholar] [CrossRef]
- Leitão, C.I.M.B.; Fernandes, G.V.O.; Azevedo, L.P.P.; Araújo, F.M.; Donato, H.; Correia, A.R.M. Clinical performance of monolithic CAD/CAM tooth-supported Zirconia restorations: Systematic review and meta-analysis. J. Prosthodont. Res. 2022, 66, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Dewan, H. Clinical effectiveness of 3D-milled and 3D-printed Zirconia prosthesis—A systematic review and meta-analysis. Biomimetics 2023, 8, 394. [Google Scholar] [CrossRef]
- Blackburn, C.; Rask, H.; Awada, A. Mechanical properties of resin-ceramic CAD-CAM materials after accelerated aging. J. Prosthet. Dent. 2018, 119, 954–958. [Google Scholar] [CrossRef]
- ASTM C1327-15; Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics. ASTM International: West Conshohocken, PA, USA, 2015.
- Della Bona, A.; Anusavice, K.J.; Mecholsky, J.J. Failure analysis of resin composite bonded to ceramic. Dent. Mater. 2003, 19, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Zarone, F.; Di Mauro, M.I.; Ausiello, P.; Ruggiero, G.; Sorrentino, R. Current status on lithium disilicate and Zirconia: A narrative review. BMC Oral Health 2019, 19, 134. [Google Scholar] [CrossRef]
- Munoz, A.; Zhao, Z.; Paolone, G.; Louca, C.; Vichi, A. Flexural strength of CAD/CAM lithium-based silicate glass-ceramics: A narrative review. Materials 2023, 16, 4398. [Google Scholar] [CrossRef]
- Nassary Zadeh, P.; Lümkemann, N.; Sener, B.; Eichberger, M.; Stawarczyk, B. Flexural strength, fracture toughness, and translucency of cubic/tetragonal Zirconia materials. J. Prosthet. Dent. 2018, 120, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Elsaka, S.E. Optical and mechanical properties of newly developed monolithic multilayer Zirconia. J. Prosthodont. 2019, 28, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.I.; Kwon, Y.H.; Seol, H.J. In vitro evaluation of speed sintering and glazing effects on the flexural strength and microstructure of highly translucent multilayered 5 mol% yttria-stabilized Zirconia. Materials 2024, 17, 4634. [Google Scholar] [CrossRef]
- Paek, T.; Fan, Y.; Giordano, R. Mechanical properties of translucent multilayered dental Zirconia. J. Dent. Oral Disord. 2020, 6, 1124. [Google Scholar]
- Reale Reyes, A.; Dennison, J.B.; Powers, J.M.; Sierraalta, M.; Yaman, P. Translucency and flexural strength of translucent Zirconia ceramics. J. Prosthet. Dent. 2023, 129, 644–649. [Google Scholar] [CrossRef]
- Zenthöfer, A.; Schwindling, F.S.; Schmitt, C.; Ilani, A.; Zehender, N.; Rammelsberg, P.; Rues, S. Strength and reliability of Zirconia fabricated by additive manufacturing technology. Dent. Mater. 2022, 38, 1565–1574. [Google Scholar] [CrossRef]
- Winter, A.; Schurig, A.; Odenthal, A.L.; Schmitter, M. Impact of different layers within a blank on mechanical properties of multi-layered Zirconia ceramics before and after thermal aging. Dent. Mater. 2022, 38, e147–e154. [Google Scholar] [CrossRef]
- Inokoshi, M.; Liu, H.; Yoshihara, K.; Yamamoto, M.; Tonprasong, W.; Benino, Y.; Minakuchi, S.; Vleugels, J.; Van Meerbeek, B.; Zhang, F. Layer characteristics in strength-gradient multilayered yttria-stabilized Zirconia. Dent. Mater. 2023, 39, 430–441. [Google Scholar] [CrossRef]
- Wendler, M.; Belli, R.; Petschelt, A.; Mevec, D.; Harrer, W.; Lube, T.; Danzer, R.; Lohbauer, U. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dent. Mater. 2017, 33, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, A.; Vafaei, F.; Hooshyarfard, A.; Nosrati, E.; Nazari, M.; Farhadian, M. Effect of sintering temperature on flexural strength of two types of Zirconia. Front. Dent. 2022, 19, 31. [Google Scholar] [CrossRef] [PubMed]
- Maharishi, A.; McLaren, E.A.; White, S.N. Color- and strength-graded Zirconia: Strength, light transmission, and composition. J. Prosthet. Dent. 2024, 131, 1236.e1–1236.e9. [Google Scholar] [CrossRef]
- Strasser, T.; Wertz, M.; Koenig, A.; Koetzsch, T.; Rosentritt, M. Microstructure, composition, and flexural strength of different layers within Zirconia materials with strength gradient. Dent. Mater. 2023, 39, 463–468. [Google Scholar] [CrossRef]
- Church, T.D.; Jessup, J.P.; Guillory, V.L. Translucency and strength of high translucency monolithic zirconium oxide materials. Gen. Dent. 2017, 65, 68–73. [Google Scholar]
- Tsitrou, E.A.; Northeast, S.E.; van Noort, R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J. Dent. 2007, 35, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, O.; Watts, D.C.; Sigusch, B.W.; Kuepper, H.; Guentsch, A. Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: A three-dimensional analysis of accuracy and reproducibility. Dent. Mater. 2012, 28, 320–326. [Google Scholar] [CrossRef]
- Bottino, M.A.; Campos, F.; Ramos, N.C.; Rippe, M.P.; Valandro, L.F.; Melo, R.M. Inlays made from a hybrid material: Adaptation and bond strengths. Oper. Dent. 2015, 40, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Charlton, D.; Roberts, H.W.; Tiba, A. Measurement of select physical and mechanical properties of three machinable ceramic materials. Quintessence Int. 2008, 39, 573–579. [Google Scholar]
- Zhang, Y.R.; Du, W.; Zhou, X.D.; Yu, H.Y. Review of research on the mechanical properties of the human tooth. Int. J. Oral Sci. 2014, 6, 61–69. [Google Scholar] [CrossRef]
- Goujat, A.; Abouelleil, H.; Colon, P.; Jeannin, C.; Pradelle, N.; Seux, D.; Grosgogeat, B. Mechanical properties and internal fit of 4 CAD-CAM block materials. J. Prosthet. Dent. 2018, 119, 384–389. [Google Scholar] [CrossRef]


| Material Selection | ZOLID®FX Multilayer![]() (ZF) Y2O3: 8.5–9.5% | IPS E.MAX® ZirCAD MT![]() (ZM) Y2O3: 6.5–8.0% | KATANA® STML![]() (KS) Y2O3: 7–10% | IPS E.MAX® CAD LT![]() (MC)Y2O3: 0% |
| Sample Preparation | ![]() | |||
| Sintering Features | Sintered at 1450 °C for 120 min (8 °C·min−1), then cooled at −10 °C·min−1 to 300 °C and naturally to room temperature. 20 samples | Sintered in the inFire HTC Speed furnace: heated at 10 °C·min−1 to 900 °C (30 min hold), then at 3 °C·min−1 to 1500 °C for 120 min, cooled at −10 °C·min−1 to 900 °C, −8 °C·min−1 to 300 °C, and naturally to room temperature. 20 samples | Sintered in the Ceramill Therm furnace at 1550 °C for 120 min (10 °C·min−1 heating), then cooled at −10 °C·min−1 to 300 °C and slowly to room temperature inside the furnace. 20 samples | Crystallized in the Programat P5010 furnace: heated at 90 °C·min−1 to 820 °C (10 min), then 30 °C·min−1 to 840 °C (7 min), followed by slow cooling to 500 °C and natural cooling to room temperature. 20 samples |
| Sample Shapes | ![]() | |||
| Testing apparatus | ![]() | ![]() | ||
| Testing sample loaded in universal testing machine. | Microhardness Tester (Matsuzawa Seiki Co., Ltd., Akita, Japan) (c) Tested sample under the microscope lens. (d) Diamond indenter touch the sample surface. | |||
| Materials | Flexural-Strength (MPa) a | Elastic Modulus (GPa) | Hardness (GPa) a |
|---|---|---|---|
| E.MAX®CAD | 252.8 (39.8) c | 65.8 (6.5) c | 4.2 (0.2) c |
| ZOLID®FX ML | 462.5 (22.7) | 83.9 (6.5) | 9.6 (0.6) b |
| KATANA®STML | 431.8 (60.4) | 94.1 (5.8) b | 9.6 (0.3) b |
| E.MAX®ZIRCAD | 547.6 (125.7) b | 94.0 (5.1) b | 8.4 (0.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Naba’a, L.A.; Almohammed, S.N.; Ziyad, T.A. An Investigation of the Mechanical Characteristics of Four CAD-CAM Monolithic Zirconia Materials. Ceramics 2025, 8, 135. https://doi.org/10.3390/ceramics8040135
Abu-Naba’a LA, Almohammed SN, Ziyad TA. An Investigation of the Mechanical Characteristics of Four CAD-CAM Monolithic Zirconia Materials. Ceramics. 2025; 8(4):135. https://doi.org/10.3390/ceramics8040135
Chicago/Turabian StyleAbu-Naba’a, Layla A., Saleh N. Almohammed, and Tareq A. Ziyad. 2025. "An Investigation of the Mechanical Characteristics of Four CAD-CAM Monolithic Zirconia Materials" Ceramics 8, no. 4: 135. https://doi.org/10.3390/ceramics8040135
APA StyleAbu-Naba’a, L. A., Almohammed, S. N., & Ziyad, T. A. (2025). An Investigation of the Mechanical Characteristics of Four CAD-CAM Monolithic Zirconia Materials. Ceramics, 8(4), 135. https://doi.org/10.3390/ceramics8040135









