Barium Strontium Titanate: Comparison of Material Properties Obtained via Solid-State and Sol–Gel Synthesis
Abstract
1. Introduction
2. Materials and Methods
2.1. BST Synthesis
2.1.1. Solid-State Reaction (SSR)
- 25 °C to 500 °C, 3 K/min heating rate
- 500 °C to 1300 °C, 10 K/min heating rate
- 1300 °C, 2 h holding time
- 1300 °C to 25 °C, 10 K/min cooling rate.
2.1.2. Sol–Gel Process (SGP)
- 25 °C to 1000 °C, 5 K/min heating rate
- 1000 °C, 3 h holding time
- 1000 °C to 25 °C, 8 K /min cooling rate.
2.2. Characterization
2.2.1. Thermal Analysis (TGA)
2.2.2. Particle Characterization
2.2.3. X-Ray Diffraction (XRD)
2.2.4. Dielectric Properties
2.2.5. Electrophoretic Deposition (EPD)
3. Results and Discussion
3.1. Synthesis
3.1.1. Thermal Analysis
3.1.2. Particle Characterization
3.2. Phase Analysis by XRD
3.3. Dielectric Characterization
| Composition | Measured SSR Curie Temperature (°C) | SSR Curie Temperature (°C), Taken from the Literature | Measured SGP Curie Temperature (°C) | SGP Curie Temperature (°C), Taken from the Literature |
|---|---|---|---|---|
| BaTiO3 | 125–135 | 127 [46] | n.a. | 130 [45] |
| Ba0.95Sr0.05TiO3 | 115–125 | n.a. | 115–125 | n.a. |
| Ba0.90Sr0.1TiO3 | 100–110 | 112 [31] | n.a. | 108 [45] |
| Ba0.85Sr0.15TiO3 | 95–105 | 94 [31] | 95–105 | n.a. |
| Ba0.80Sr0.2TiO3 | 85–95 | 70 [46], 86 [31] | n.a. | 73 [28], 77 [45] |
| Ba0.75Sr0.25TiO3 | 65–75 | 78 [31] (Ba0.78Sr0.22TiO3) | 60–70 | n.a. |
3.4. Electrophoretic Deposition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moulson, A.J.; Herbert, J.M. Electroceramics, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2003. [Google Scholar]
- Pandiyan, A.; Veeramuthu, L.; Yan, Z.L.; Lin, Y.C.; Tsai, C.H.; Chang, S.T.; Chiang, W.H.; Xu, S.; Zhou, T.; Kuo, C.C. A comprehensive review on perovskite and its functional composites in smart textiles: Progress, challenges, opportunities, and future directions. Prog. Mater. Sci. 2023, 140, 101206. [Google Scholar] [CrossRef]
- Pradeesh, E.L.; Udhayakumar, S.; Vasundhara, M.G.; Kalavathi, G.K. A review on piezoelectric energy harvesting. Microsyst. Technol. 2022, 28, 1797–1830. [Google Scholar] [CrossRef]
- Zou, K.; Dan, Y.; Xu, H.; Zhang, Q.; Lu, Y.; Huang, H.; He, Y. Recent advances in lead-free dielectric materials for energy storage. Mat. Res. Bull. 2019, 113, 190–201. [Google Scholar] [CrossRef]
- Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G.A.; Rödel, J. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev. 2017, 4, 041305. [Google Scholar] [CrossRef]
- Rödel, J.; Webber, K.G.; Dittmer, R.; Jo, W.; Kimura, M.; Damjanovic, D. Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 2015, 35, 1659–1681. [Google Scholar] [CrossRef]
- Li, J.F.; Wang, K.; Zhu, F.Y.; Cheng, L.Q.; Yao, F.Z.; Green, D.J. (K,Na)NbO3-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges. J. Am. Ceram. Soc. 2013, 96, 3677–3696. [Google Scholar] [CrossRef]
- Coondoo, I.; Panwar, N.; Kholkin, A. Lead-free piezoelectrics: Current status and perspectives. J. Adv. Dielectr. 2013, 3, 1330002. [Google Scholar] [CrossRef]
- Ruf, T.; Mauck, M.; Megnin, C.; Winkler, M.; Hillebrecht, H.; Hanemann, T. The influence on sintering and properties of sodium niobate (NaNbO3) ceramics by “non-stoichiometric” precursor compositions. Mater. Chem. Phys. 2019, 229, 437–447. [Google Scholar] [CrossRef]
- Buscaglia, V.; Randall, C.A. Size and scaling effects in barium titanate. An overview. J. Eur. Ceram. Soc. 2020, 11, 3744–3758. [Google Scholar] [CrossRef]
- Wang, B.; Liu, W.; Zhao, T.; Peng, W.; Ci, P.; Dong, S. Promising Lead-Free BiFeO3-BaTiO3 Ferroelectric Ceramics: Optimization Strategies and Diverse Device Applications. Prog. Mater Sci. 2024, 146, 101333. [Google Scholar] [CrossRef]
- Varade, P.; Pandey, A.H.; Selvamani, R.; Venkataramani, N.; Kulkarni, A.R. Tuning structural, dielectric, and ferroelectric properties of BTO-based ceramics through dual-site substitution. Mater. Chem. Phys. 2024, 319, 129381. [Google Scholar] [CrossRef]
- Coondoo, I.; Pullar, R.C.; Miranda, G. Multifunctional lead-free piezoelectric (Ba,Ca)(Zr,Ti)O3 compounds: From energy harvesting to electrocaloric cooling and energy storage applications. Mater. Res. Bull. 2024, 179, 112924. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Hao, S.; Janolin, P.E. Enhancing properties of lead-free ferroelectric BaTiO3 through doping. J. Eur. Ceram. Soc. 2002, 42, 4396–4701. [Google Scholar] [CrossRef]
- Nayak, R.; Miglani, Y.; Bhardwaj, S. Synthesis and characterization of ferroelectric Barium strontium titanate Ceramics. Mater. Today Proc. 2023, 78, 839–841. [Google Scholar] [CrossRef]
- Costa, L.C.; Aoujgal, A.; Graça, M.P.F.; Hadik, N.; Achour, M.E.; Tachafine, A.; Carru, J.C.; Oueriagli, A.; Outzourit, A. Microwave dielectric properties of the system Ba1−xSrxTiO3. Phys. B Condens. Matter 2010, 405, 3741–3744. [Google Scholar] [CrossRef]
- Jeon, J.H. Effect of SrTiO3 concentration and sintering temperature on microstructure and dielectric constant of Ba1−xSrxTiO3. J. Eur. Ceram. Soc. 2004, 24, 1045–1048. [Google Scholar] [CrossRef]
- Dobal, P.S.; Dixit, A.; Katiyar, R.S.; Garcia, D.; Guo, R.; Bhalla, A.S. Phase Transitions in Ba1− xSrxTiO3 Ceramics. Ferroelectr. Lett. Sect. 2002, 29, 1–10. [Google Scholar] [CrossRef]
- Buscaglia, M.T.; Bassoli, M.; Buscaglia, V.; Vormberg, R. Solid-State Synthesis of Nanocrystalline BaTiO3: Reaction Kinetics and Powder Properties. J. Am. Ceram. Soc. 2008, 91, 2862–2869. [Google Scholar] [CrossRef]
- Li, J.; Jin, D.; Zhou, L.; Cheng, J. Dielectric properties of Barium Strontium Titanate (BST) ceramics synthesized by using mixed-phase powders calcined at varied temperatures. Mater. Lett. 2012, 76, 100–102. [Google Scholar] [CrossRef]
- Jamaluddin, A.; Suwarni, A.; Supriyanto, A.; Iriani, Y. Properties of strontium doped barium titanate powder prepared by solid state reaction. J. Phys. Conf. Ser. 2016, 776, 012052. [Google Scholar] [CrossRef]
- Shastri, N.M.; Joshi, K.J.; Mangrola, M.H.; Joshi, V.G. Characterization of barium strontium titanate BaxSr1−xTiO3 (with x = 0.5 and x = 0.7) synthesized by a solid-state reaction method. AIP Conf. Proc. 2020, 2220, 020094. [Google Scholar] [CrossRef]
- Sandi, D.K.; Supriyanto, A.; Jamaluddin, A.; Iriani, Y. The influences of mole composition of strontium (x) on properties of barium strontium titanate (Ba1−xSrxTiO3) prepared by solid state reaction method. AIP Conf. Proc. 2016, 1710, 030006. [Google Scholar] [CrossRef]
- Maharsi, R.; Jamaluddin, A.; Supriyanto, A.; Iriani, Y. Crystalline Characterization and Dielectric Constant of Barium Strontium Titanates Prepared by Solid State Reaction. Adv. Mater Res. 2015, 1123, 123–126. [Google Scholar] [CrossRef]
- Wright, J.D.; Sommerijk, N.A.J.M. Sol-Gel Materials: Chemistry and Applications, 1st ed.; Taylor & Francis Group: London, UK, 2000. [Google Scholar] [CrossRef]
- Chilibon, I.; Marat-Mendes, J.N. Ferroelectric ceramics by sol–gel methods and applications: A review. J. Sol-Gel Sci. Technol. 2012, 64, 571–611. [Google Scholar] [CrossRef]
- Shahid, M.Y.; Anwar, A.; Malik, F.; Asghar, M.; Warsi, M.F.; Ilyas, S.Z. Effect of Sr-Doping on Ferroelectric and Dielectric Properties of Sol-gel Synthesized BaTiO3 Thin Films. Dig. J. Nanomater. Biostruct. 2017, 12, 669–677. [Google Scholar]
- Gatea, H.A.; Naji, I.S. The effect of Ba/Sr ratio on the Curie temperature for ferroelectric barium strontium titanate ceramics. J. Adv. Dielectr. 2020, 10, 2050021. [Google Scholar] [CrossRef]
- Azim Araghi, M.E.; Shaban, N.; Bahar, M. Synthesis and characterization of nanocrystalline barium strontium titanate powder by a modified sol-gel processing. Mater. Sci.-Pol. 2016, 34, 63–68. [Google Scholar] [CrossRef]
- Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I.H.; Valiev, G.H.; Kianfar, E.; Wang, Z. Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv. Mater. Sci. Eng. 2021, 1, 5102014. [Google Scholar] [CrossRef]
- Kathait, G.S.; Rohilla, V.; Thapliyal, P.; Biswas, D.; Singh, S. Effect of different strontium content on dielectric properties of barium strontium titanate ceramic. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 2017, 6, 75–79. [Google Scholar]
- Wu, Y.J.; Huang, Y.H.; Wang, N.; Li, J.; Fu, M.S.; Chen, X.M. Effects of phase constitution and microstructure on energy storage properties of barium strontium titanate ceramics. J. Eur. Ceram. Soc. 2017, 37, 2099–2104. [Google Scholar] [CrossRef]
- Deshpande, S.B.; Khollam, Y.B.; Potdar, H.S. Microwave-Hydrothermal (MH) Synthesis of Ba1−xSrxTiO3 (BST). Ferroelectrics 2005, 327, 39–43. [Google Scholar] [CrossRef]
- Yin, L.; Jiang, F.; Feng, G.; Wu, C.; Tan, J.; Wu, Q.; Zhang, Q.; Hu, Q.; Liu, J.; Jiang, W. Effects of raw materials on nonhydrolytic sol-gel synthesis of Ba0.6Sr0.4TiO3. Ceram. Intern. 2022, 48, 25681–25688. [Google Scholar] [CrossRef]
- Khirade, P.P.; Vinayak, V.; Kharat, P.B.; Chavan, A.R. Green Synthesis of Ba1−xSrxTiO3 ceramic nanopowders by sol-gel combustion method using lemon juice as a fuel: Tailoring of Microstructure, ferroelectric, dielectric and electrical properties. Opt. Mater. 2021, 111, 110664. [Google Scholar] [CrossRef]
- Paul, F. Dotierte Ba0,6Sr0,4TiO3-Dickschichten als Steuerbare Dielektrika: Pulversynthese und Dielektrische Eigenschaften. Ph.D. Thesis, University of Freiburg, Freiburg, Germany, 6 July 2006. (In German). [Google Scholar]
- Uddin, S.; Hameed, S.; Ali, N.; Althubeiti, K.; Zaman, A.; Alrobei, H.; Mushtaq, M.; Ali, A.; Sultana, F. Effect of Sr2+doping on the phase transition of BaTiO3 lead-free ferroelectric ceramics. Mater. Res. Exp. 2021, 8, 096101. [Google Scholar] [CrossRef]
- Das Periodensystem der Elemente Online. Strontiumacetat, Sr(CH3COO)2. Available online: https://www.periodensystem-online.de/index.php?el=38&id=compound&cpid=1473 (accessed on 13 July 2025).
- Das Periodensystem der Elemente Online. Bariumacetat, Ba(CH3COO)2. Available online: https://www.periodensystem-online.de/index.php?el=56&id=compound&cpid=1182 (accessed on 13 July 2025).
- Hwang, U.Y.; Park, H.S.; Koo, K.K. Behavior of Barium Acetate and Titanium Isopropoxide during the Formation of Crystalline Barium Titanate. Ind. Eng. Chem. Res. 2004, 43, 728–734. [Google Scholar] [CrossRef]
- ICSD Web. Available online: https://icsd.fiz-karlsruhe.de/display/list.xhtml (accessed on 20 March 2025).
- Schumacher, B.; Geßwein, H.; Haußelt, J.; Hanemann, T. Temperature treatment of nano-scaled barium titanate filler to improve the dielectric properties of high-k polymer-based composites. Microelectr. Eng. 2010, 87, 1978–1983. [Google Scholar] [CrossRef]
- Kinoshita, K.; Yamaji, A. Grain-size effects on dielectric properties in barium titanate ceramics. J. Appl. Phys. 1976, 47, 371–373. [Google Scholar] [CrossRef]
- Buscaglia, V.; Buscaglia, M.T.; Viviani, M.; Mitoseriu, L.; Nanni, P.; Trefiletti, V.; Piaggio, P.; Gregora, I.; Ostapchuk, T.; Pokorny, J.; et al. Grain size and grain boundary-related effects on the properties of nanocrystalline barium titanate ceramics. J. Eur. Ceram. Soc. 2006, 26, 2889–2898. [Google Scholar] [CrossRef]
- Ianculescu, A.; Pintilie, I.; Vasilescu, C.A.; Botea, M.; Iuga, A.; Melinescu, A.; Drăgan, N.; Pintilie, L. Intrinsic pyroelectric properties of thick, coarse grained Ba1−xSrxTiO3 ceramics. Ceram. Int. 2016, 42, 10338–10348. [Google Scholar] [CrossRef]
- Maity, S.; Sasmal, A.; Sen, S. Comprehensive characterization of Ba1−xSrxTiO3: Correlation between structural and multifunctional properties. J. Alloys Comp. 2021, 884, 161072. [Google Scholar] [CrossRef]
- Ketterer, I.; Yang, C.K.; Frey, M.; Wapler, M.; Hanemann, T. Lead-free barium titanate piezoceramics prepared by electrophoretic deposition on graphite electrodes. In Proceedings of the MikroSystemTechnik Kongress, Ludwigsburg, Germany, 8–10 November 2021; pp. 388–391. [Google Scholar]
- Hamaker, H.C. Formation of a Deposit by Electrophoresis. Trans. Faraday Soc. 1940, 36, 279–287. [Google Scholar] [CrossRef]
- Besra, L.; Liu, M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 2007, 52, 1–61. [Google Scholar] [CrossRef]
- Sarkar, P.; Nicholson, P.S. Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics. J. Am. Ceram. Soc. 1996, 79, 1987–2002. [Google Scholar] [CrossRef]














| Name | Vendor |
|---|---|
| Barium carbonate | VWR (Darmstadt, Germany) |
| Strontium carbonate | Merck (Darmstadt, Germany) |
| Titanium (IV) oxide | Merck (Darmstadt, Germany) |
| Acetone (Rotisolv HPLC ≥ 99.9%) | Carl Roth (Karlsruhe, Germany) |
| Polymethylmethacrylate (PMMA) | Merck (Darmstadt, Germany) |
| Name | Vendor |
|---|---|
| Barium acetate | Alfa Aesar (Schwerte, Germany) |
| Strontium acetate | Merck (Darmstadt, Germany) |
| Ammonium acetate | Carl Roth (Karlsruhe, Germany) |
| Titanium isopropoxide | Merck (Darmstadt, Germany) |
| 2-Methoxyethanol | Fluka (Seelze, Germany) |
| Acetic acid | Carl Roth (Karlsruhe, Germany) |
| SSR | SGP | ||
|---|---|---|---|
| Composition | Denomination | Composition | Denomination |
| BaTiO3 | BST-SSR-000 | - | - |
| Ba0.95Sr0.05TiO3 | BST-SSR-005 | Ba0.95Sr0.05TiO3 | BST-SGP-005 |
| Ba0.90Sr0.1TiO3 | BST-SSR-010 | - | - |
| Ba0.85Sr0.15TiO3 | BST-SSR-015 | Ba0.85Sr0.15TiO3 | BST-SGP-015 |
| Ba0.80Sr0.2TiO3 | BST-SSR-020 | - | - |
| Ba0.75Sr0.25TiO3 | BST-SSR-025 | Ba0.75Sr0.25TiO3 | BST-SGP-025 |
| Name | Vendor |
|---|---|
| Isopropanol (≥99.9%) | Carl Roth (Karlsruhe, Germany) |
| Acetone (≥99.9%) | Carl Roth (Karlsruhe, Germany) |
| 3,6,9 Trioxadecanoic acid <100%, technical grade | Merck (Darmstadt, Germany) |
| Polymethylmethacrylate (PMMA) | Merck (Darmstadt, Germany) |
| Denomination | Deposition Time (s) | Denomination | Denomination | Deposition Time (s) |
|---|---|---|---|---|
| SSR-Steel 1 | 30 | SSR-Graphite 1 | SGP-Graphite 1 | 180 |
| SSR-Steel 2 | 60 | SSR-Graphite 2 | SGP-Graphite 2 | 240 |
| SSR-Steel 3 | 90 | SSR-Graphite 3 | SGP-Graphite 3 | 300 |
| SSR-Steel 4 | 120 | SSR-Graphite 4 | - | - |
| SSR-Steel 5 | 150 | SSR-Graphite 5 | - | - |
| SSR-Steel 6 | 180 | SSR-Graphite 6 | - | - |
| Denomination | APS (µm) | SSA (m2/g) | Denomination | APS (µm) | SSA (m2/g) |
|---|---|---|---|---|---|
| BST-SSR-000 | 3.7 | 0.9 | - | - | - |
| BST-SSR-005 | 2.2 | 0.5 | BST-SGP-005 | 1.2 | 2.7 |
| BST-SSR-010 | 2.5 | 0.8 | - | - | - |
| BST-SSR-015 | 4.2 | 0.7 | BST-SGP-015 | 1.9 | 3.2 |
| BST-SSR-020 | 4.4 | 0.6 | - | - | - |
| BST-SSR-025 | 2.4 | 1.4 | BST-SGP-025 | 1.8 | 5.9 |
| Sample | Layer Thickness (µm) |
|---|---|
| SSR-Steel 3 | 24.3 ± 3.5 |
| SSR-Steel 4 | 14.3 ± 2.2 |
| SSR-Steel 5 | 17.1 ± 3.1 |
| SSR-Steel 6 | 25.0 ± 3.6 |
| SSR-Graphite 3 | 14.9 ± 1.9 |
| SSR-Graphite 4 | 11.1 ± 1.2 |
| SSR-Graphite 5 | 15.5 ± 1.4 |
| SSR-Graphite 6 | 17.1 ± 1.4 |
| SGP-Graphite 1 | 30.2 ± 3.0 |
| SGP-Graphite 2 | 39.4 ± 2.0 |
| SGP-Graphite 3 | 27.6 ± 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanemann, T.; Ade, M.; Cimen, E.; Schoenfelder, J.; Honnef, K.; Wapler, M.; Ketterer, I. Barium Strontium Titanate: Comparison of Material Properties Obtained via Solid-State and Sol–Gel Synthesis. Ceramics 2025, 8, 126. https://doi.org/10.3390/ceramics8040126
Hanemann T, Ade M, Cimen E, Schoenfelder J, Honnef K, Wapler M, Ketterer I. Barium Strontium Titanate: Comparison of Material Properties Obtained via Solid-State and Sol–Gel Synthesis. Ceramics. 2025; 8(4):126. https://doi.org/10.3390/ceramics8040126
Chicago/Turabian StyleHanemann, Thomas, Martin Ade, Emine Cimen, Julia Schoenfelder, Kirsten Honnef, Matthias Wapler, and Ines Ketterer. 2025. "Barium Strontium Titanate: Comparison of Material Properties Obtained via Solid-State and Sol–Gel Synthesis" Ceramics 8, no. 4: 126. https://doi.org/10.3390/ceramics8040126
APA StyleHanemann, T., Ade, M., Cimen, E., Schoenfelder, J., Honnef, K., Wapler, M., & Ketterer, I. (2025). Barium Strontium Titanate: Comparison of Material Properties Obtained via Solid-State and Sol–Gel Synthesis. Ceramics, 8(4), 126. https://doi.org/10.3390/ceramics8040126

