Barium Strontium Titanate: Comparison of Material Properties Obtained via Solid-State and Sol–Gel Synthesis
Abstract
1. Introduction
2. Materials and Methods
2.1. BST Synthesis
2.1.1. Solid-State Reaction (SSR)
- 25 °C to 500 °C, 3 K/min heating rate
- 500 °C to 1300 °C, 10 K/min heating rate
- 1300 °C, 2 h holding time
- 1300 °C to 25 °C, 10 K/min cooling rate.
2.1.2. Sol–Gel Process (SGP)
- 25 °C to 1000 °C, 5 K/min heating rate
- 1000 °C, 3 h holding time
- 1000 °C to 25 °C, 8 K /min cooling rate.
2.2. Characterization
2.2.1. Thermal Analysis (TGA)
2.2.2. Particle Characterization
2.2.3. X-Ray Diffraction (XRD)
2.2.4. Dielectric Properties
2.2.5. Electrophoretic Deposition (EPD)
3. Results and Discussion
3.1. Synthesis
3.1.1. Thermal Analysis
3.1.2. Particle Characterization
3.2. Phase Analysis by XRD
3.3. Dielectric Characterization
Composition | Measured SSR Curie Temperature (°C) | SSR Curie Temperature (°C), Taken from the Literature | Measured SGP Curie Temperature (°C) | SGP Curie Temperature (°C), Taken from the Literature |
---|---|---|---|---|
BaTiO3 | 125–135 | 127 [46] | n.a. | 130 [45] |
Ba0.95Sr0.05TiO3 | 115–125 | n.a. | 115–125 | n.a. |
Ba0.90Sr0.1TiO3 | 100–110 | 112 [31] | n.a. | 108 [45] |
Ba0.85Sr0.15TiO3 | 95–105 | 94 [31] | 95–105 | n.a. |
Ba0.80Sr0.2TiO3 | 85–95 | 70 [46], 86 [31] | n.a. | 73 [28], 77 [45] |
Ba0.75Sr0.25TiO3 | 65–75 | 78 [31] (Ba0.78Sr0.22TiO3) | 60–70 | n.a. |
3.4. Electrophoretic Deposition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moulson, A.J.; Herbert, J.M. Electroceramics, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2003. [Google Scholar]
- Pandiyan, A.; Veeramuthu, L.; Yan, Z.L.; Lin, Y.C.; Tsai, C.H.; Chang, S.T.; Chiang, W.H.; Xu, S.; Zhou, T.; Kuo, C.C. A comprehensive review on perovskite and its functional composites in smart textiles: Progress, challenges, opportunities, and future directions. Prog. Mater. Sci. 2023, 140, 101206. [Google Scholar] [CrossRef]
- Pradeesh, E.L.; Udhayakumar, S.; Vasundhara, M.G.; Kalavathi, G.K. A review on piezoelectric energy harvesting. Microsyst. Technol. 2022, 28, 1797–1830. [Google Scholar] [CrossRef]
- Zou, K.; Dan, Y.; Xu, H.; Zhang, Q.; Lu, Y.; Huang, H.; He, Y. Recent advances in lead-free dielectric materials for energy storage. Mat. Res. Bull. 2019, 113, 190–201. [Google Scholar] [CrossRef]
- Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G.A.; Rödel, J. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev. 2017, 4, 041305. [Google Scholar] [CrossRef]
- Rödel, J.; Webber, K.G.; Dittmer, R.; Jo, W.; Kimura, M.; Damjanovic, D. Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 2015, 35, 1659–1681. [Google Scholar] [CrossRef]
- Li, J.F.; Wang, K.; Zhu, F.Y.; Cheng, L.Q.; Yao, F.Z.; Green, D.J. (K,Na)NbO3-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges. J. Am. Ceram. Soc. 2013, 96, 3677–3696. [Google Scholar] [CrossRef]
- Coondoo, I.; Panwar, N.; Kholkin, A. Lead-free piezoelectrics: Current status and perspectives. J. Adv. Dielectr. 2013, 3, 1330002. [Google Scholar] [CrossRef]
- Ruf, T.; Mauck, M.; Megnin, C.; Winkler, M.; Hillebrecht, H.; Hanemann, T. The influence on sintering and properties of sodium niobate (NaNbO3) ceramics by “non-stoichiometric” precursor compositions. Mater. Chem. Phys. 2019, 229, 437–447. [Google Scholar] [CrossRef]
- Buscaglia, V.; Randall, C.A. Size and scaling effects in barium titanate. An overview. J. Eur. Ceram. Soc. 2020, 11, 3744–3758. [Google Scholar] [CrossRef]
- Wang, B.; Liu, W.; Zhao, T.; Peng, W.; Ci, P.; Dong, S. Promising Lead-Free BiFeO3-BaTiO3 Ferroelectric Ceramics: Optimization Strategies and Diverse Device Applications. Prog. Mater Sci. 2024, 146, 101333. [Google Scholar] [CrossRef]
- Varade, P.; Pandey, A.H.; Selvamani, R.; Venkataramani, N.; Kulkarni, A.R. Tuning structural, dielectric, and ferroelectric properties of BTO-based ceramics through dual-site substitution. Mater. Chem. Phys. 2024, 319, 129381. [Google Scholar] [CrossRef]
- Coondoo, I.; Pullar, R.C.; Miranda, G. Multifunctional lead-free piezoelectric (Ba,Ca)(Zr,Ti)O3 compounds: From energy harvesting to electrocaloric cooling and energy storage applications. Mater. Res. Bull. 2024, 179, 112924. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Hao, S.; Janolin, P.E. Enhancing properties of lead-free ferroelectric BaTiO3 through doping. J. Eur. Ceram. Soc. 2002, 42, 4396–4701. [Google Scholar] [CrossRef]
- Nayak, R.; Miglani, Y.; Bhardwaj, S. Synthesis and characterization of ferroelectric Barium strontium titanate Ceramics. Mater. Today Proc. 2023, 78, 839–841. [Google Scholar] [CrossRef]
- Costa, L.C.; Aoujgal, A.; Graça, M.P.F.; Hadik, N.; Achour, M.E.; Tachafine, A.; Carru, J.C.; Oueriagli, A.; Outzourit, A. Microwave dielectric properties of the system Ba1−xSrxTiO3. Phys. B Condens. Matter 2010, 405, 3741–3744. [Google Scholar] [CrossRef]
- Jeon, J.H. Effect of SrTiO3 concentration and sintering temperature on microstructure and dielectric constant of Ba1−xSrxTiO3. J. Eur. Ceram. Soc. 2004, 24, 1045–1048. [Google Scholar] [CrossRef]
- Dobal, P.S.; Dixit, A.; Katiyar, R.S.; Garcia, D.; Guo, R.; Bhalla, A.S. Phase Transitions in Ba1− xSrxTiO3 Ceramics. Ferroelectr. Lett. Sect. 2002, 29, 1–10. [Google Scholar] [CrossRef]
- Buscaglia, M.T.; Bassoli, M.; Buscaglia, V.; Vormberg, R. Solid-State Synthesis of Nanocrystalline BaTiO3: Reaction Kinetics and Powder Properties. J. Am. Ceram. Soc. 2008, 91, 2862–2869. [Google Scholar] [CrossRef]
- Li, J.; Jin, D.; Zhou, L.; Cheng, J. Dielectric properties of Barium Strontium Titanate (BST) ceramics synthesized by using mixed-phase powders calcined at varied temperatures. Mater. Lett. 2012, 76, 100–102. [Google Scholar] [CrossRef]
- Jamaluddin, A.; Suwarni, A.; Supriyanto, A.; Iriani, Y. Properties of strontium doped barium titanate powder prepared by solid state reaction. J. Phys. Conf. Ser. 2016, 776, 012052. [Google Scholar] [CrossRef]
- Shastri, N.M.; Joshi, K.J.; Mangrola, M.H.; Joshi, V.G. Characterization of barium strontium titanate BaxSr1−xTiO3 (with x = 0.5 and x = 0.7) synthesized by a solid-state reaction method. AIP Conf. Proc. 2020, 2220, 020094. [Google Scholar] [CrossRef]
- Sandi, D.K.; Supriyanto, A.; Jamaluddin, A.; Iriani, Y. The influences of mole composition of strontium (x) on properties of barium strontium titanate (Ba1−xSrxTiO3) prepared by solid state reaction method. AIP Conf. Proc. 2016, 1710, 030006. [Google Scholar] [CrossRef]
- Maharsi, R.; Jamaluddin, A.; Supriyanto, A.; Iriani, Y. Crystalline Characterization and Dielectric Constant of Barium Strontium Titanates Prepared by Solid State Reaction. Adv. Mater Res. 2015, 1123, 123–126. [Google Scholar] [CrossRef]
- Wright, J.D.; Sommerijk, N.A.J.M. Sol-Gel Materials: Chemistry and Applications, 1st ed.; Taylor & Francis Group: London, UK, 2000. [Google Scholar] [CrossRef]
- Chilibon, I.; Marat-Mendes, J.N. Ferroelectric ceramics by sol–gel methods and applications: A review. J. Sol-Gel Sci. Technol. 2012, 64, 571–611. [Google Scholar] [CrossRef]
- Shahid, M.Y.; Anwar, A.; Malik, F.; Asghar, M.; Warsi, M.F.; Ilyas, S.Z. Effect of Sr-Doping on Ferroelectric and Dielectric Properties of Sol-gel Synthesized BaTiO3 Thin Films. Dig. J. Nanomater. Biostruct. 2017, 12, 669–677. [Google Scholar]
- Gatea, H.A.; Naji, I.S. The effect of Ba/Sr ratio on the Curie temperature for ferroelectric barium strontium titanate ceramics. J. Adv. Dielectr. 2020, 10, 2050021. [Google Scholar] [CrossRef]
- Azim Araghi, M.E.; Shaban, N.; Bahar, M. Synthesis and characterization of nanocrystalline barium strontium titanate powder by a modified sol-gel processing. Mater. Sci.-Pol. 2016, 34, 63–68. [Google Scholar] [CrossRef]
- Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I.H.; Valiev, G.H.; Kianfar, E.; Wang, Z. Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv. Mater. Sci. Eng. 2021, 1, 5102014. [Google Scholar] [CrossRef]
- Kathait, G.S.; Rohilla, V.; Thapliyal, P.; Biswas, D.; Singh, S. Effect of different strontium content on dielectric properties of barium strontium titanate ceramic. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 2017, 6, 75–79. [Google Scholar]
- Wu, Y.J.; Huang, Y.H.; Wang, N.; Li, J.; Fu, M.S.; Chen, X.M. Effects of phase constitution and microstructure on energy storage properties of barium strontium titanate ceramics. J. Eur. Ceram. Soc. 2017, 37, 2099–2104. [Google Scholar] [CrossRef]
- Deshpande, S.B.; Khollam, Y.B.; Potdar, H.S. Microwave-Hydrothermal (MH) Synthesis of Ba1−xSrxTiO3 (BST). Ferroelectrics 2005, 327, 39–43. [Google Scholar] [CrossRef]
- Yin, L.; Jiang, F.; Feng, G.; Wu, C.; Tan, J.; Wu, Q.; Zhang, Q.; Hu, Q.; Liu, J.; Jiang, W. Effects of raw materials on nonhydrolytic sol-gel synthesis of Ba0.6Sr0.4TiO3. Ceram. Intern. 2022, 48, 25681–25688. [Google Scholar] [CrossRef]
- Khirade, P.P.; Vinayak, V.; Kharat, P.B.; Chavan, A.R. Green Synthesis of Ba1−xSrxTiO3 ceramic nanopowders by sol-gel combustion method using lemon juice as a fuel: Tailoring of Microstructure, ferroelectric, dielectric and electrical properties. Opt. Mater. 2021, 111, 110664. [Google Scholar] [CrossRef]
- Paul, F. Dotierte Ba0,6Sr0,4TiO3-Dickschichten als Steuerbare Dielektrika: Pulversynthese und Dielektrische Eigenschaften. Ph.D. Thesis, University of Freiburg, Freiburg, Germany, 6 July 2006. (In German). [Google Scholar]
- Uddin, S.; Hameed, S.; Ali, N.; Althubeiti, K.; Zaman, A.; Alrobei, H.; Mushtaq, M.; Ali, A.; Sultana, F. Effect of Sr2+doping on the phase transition of BaTiO3 lead-free ferroelectric ceramics. Mater. Res. Exp. 2021, 8, 096101. [Google Scholar] [CrossRef]
- Das Periodensystem der Elemente Online. Strontiumacetat, Sr(CH3COO)2. Available online: https://www.periodensystem-online.de/index.php?el=38&id=compound&cpid=1473 (accessed on 13 July 2025).
- Das Periodensystem der Elemente Online. Bariumacetat, Ba(CH3COO)2. Available online: https://www.periodensystem-online.de/index.php?el=56&id=compound&cpid=1182 (accessed on 13 July 2025).
- Hwang, U.Y.; Park, H.S.; Koo, K.K. Behavior of Barium Acetate and Titanium Isopropoxide during the Formation of Crystalline Barium Titanate. Ind. Eng. Chem. Res. 2004, 43, 728–734. [Google Scholar] [CrossRef]
- ICSD Web. Available online: https://icsd.fiz-karlsruhe.de/display/list.xhtml (accessed on 20 March 2025).
- Schumacher, B.; Geßwein, H.; Haußelt, J.; Hanemann, T. Temperature treatment of nano-scaled barium titanate filler to improve the dielectric properties of high-k polymer-based composites. Microelectr. Eng. 2010, 87, 1978–1983. [Google Scholar] [CrossRef]
- Kinoshita, K.; Yamaji, A. Grain-size effects on dielectric properties in barium titanate ceramics. J. Appl. Phys. 1976, 47, 371–373. [Google Scholar] [CrossRef]
- Buscaglia, V.; Buscaglia, M.T.; Viviani, M.; Mitoseriu, L.; Nanni, P.; Trefiletti, V.; Piaggio, P.; Gregora, I.; Ostapchuk, T.; Pokorny, J.; et al. Grain size and grain boundary-related effects on the properties of nanocrystalline barium titanate ceramics. J. Eur. Ceram. Soc. 2006, 26, 2889–2898. [Google Scholar] [CrossRef]
- Ianculescu, A.; Pintilie, I.; Vasilescu, C.A.; Botea, M.; Iuga, A.; Melinescu, A.; Drăgan, N.; Pintilie, L. Intrinsic pyroelectric properties of thick, coarse grained Ba1−xSrxTiO3 ceramics. Ceram. Int. 2016, 42, 10338–10348. [Google Scholar] [CrossRef]
- Maity, S.; Sasmal, A.; Sen, S. Comprehensive characterization of Ba1−xSrxTiO3: Correlation between structural and multifunctional properties. J. Alloys Comp. 2021, 884, 161072. [Google Scholar] [CrossRef]
- Ketterer, I.; Yang, C.K.; Frey, M.; Wapler, M.; Hanemann, T. Lead-free barium titanate piezoceramics prepared by electrophoretic deposition on graphite electrodes. In Proceedings of the MikroSystemTechnik Kongress, Ludwigsburg, Germany, 8–10 November 2021; pp. 388–391. [Google Scholar]
- Hamaker, H.C. Formation of a Deposit by Electrophoresis. Trans. Faraday Soc. 1940, 36, 279–287. [Google Scholar] [CrossRef]
- Besra, L.; Liu, M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 2007, 52, 1–61. [Google Scholar] [CrossRef]
- Sarkar, P.; Nicholson, P.S. Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics. J. Am. Ceram. Soc. 1996, 79, 1987–2002. [Google Scholar] [CrossRef]
Name | Vendor |
---|---|
Barium carbonate | VWR (Darmstadt, Germany) |
Strontium carbonate | Merck (Darmstadt, Germany) |
Titanium (IV) oxide | Merck (Darmstadt, Germany) |
Acetone (Rotisolv HPLC ≥ 99.9%) | Carl Roth (Karlsruhe, Germany) |
Polymethylmethacrylate (PMMA) | Merck (Darmstadt, Germany) |
Name | Vendor |
---|---|
Barium acetate | Alfa Aesar (Schwerte, Germany) |
Strontium acetate | Merck (Darmstadt, Germany) |
Ammonium acetate | Carl Roth (Karlsruhe, Germany) |
Titanium isopropoxide | Merck (Darmstadt, Germany) |
2-Methoxyethanol | Fluka (Seelze, Germany) |
Acetic acid | Carl Roth (Karlsruhe, Germany) |
SSR | SGP | ||
---|---|---|---|
Composition | Denomination | Composition | Denomination |
BaTiO3 | BST-SSR-000 | - | - |
Ba0.95Sr0.05TiO3 | BST-SSR-005 | Ba0.95Sr0.05TiO3 | BST-SGP-005 |
Ba0.90Sr0.1TiO3 | BST-SSR-010 | - | - |
Ba0.85Sr0.15TiO3 | BST-SSR-015 | Ba0.85Sr0.15TiO3 | BST-SGP-015 |
Ba0.80Sr0.2TiO3 | BST-SSR-020 | - | - |
Ba0.75Sr0.25TiO3 | BST-SSR-025 | Ba0.75Sr0.25TiO3 | BST-SGP-025 |
Name | Vendor |
---|---|
Isopropanol (≥99.9%) | Carl Roth (Karlsruhe, Germany) |
Acetone (≥99.9%) | Carl Roth (Karlsruhe, Germany) |
3,6,9 Trioxadecanoic acid <100%, technical grade | Merck (Darmstadt, Germany) |
Polymethylmethacrylate (PMMA) | Merck (Darmstadt, Germany) |
Denomination | Deposition Time (s) | Denomination | Denomination | Deposition Time (s) |
---|---|---|---|---|
SSR-Steel 1 | 30 | SSR-Graphite 1 | SGP-Graphite 1 | 180 |
SSR-Steel 2 | 60 | SSR-Graphite 2 | SGP-Graphite 2 | 240 |
SSR-Steel 3 | 90 | SSR-Graphite 3 | SGP-Graphite 3 | 300 |
SSR-Steel 4 | 120 | SSR-Graphite 4 | - | - |
SSR-Steel 5 | 150 | SSR-Graphite 5 | - | - |
SSR-Steel 6 | 180 | SSR-Graphite 6 | - | - |
Denomination | APS (µm) | SSA (m2/g) | Denomination | APS (µm) | SSA (m2/g) |
---|---|---|---|---|---|
BST-SSR-000 | 3.7 | 0.9 | - | - | - |
BST-SSR-005 | 2.2 | 0.5 | BST-SGP-005 | 1.2 | 2.7 |
BST-SSR-010 | 2.5 | 0.8 | - | - | - |
BST-SSR-015 | 4.2 | 0.7 | BST-SGP-015 | 1.9 | 3.2 |
BST-SSR-020 | 4.4 | 0.6 | - | - | - |
BST-SSR-025 | 2.4 | 1.4 | BST-SGP-025 | 1.8 | 5.9 |
Sample | Layer Thickness (µm) |
---|---|
SSR-Steel 3 | 24.3 ± 3.5 |
SSR-Steel 4 | 14.3 ± 2.2 |
SSR-Steel 5 | 17.1 ± 3.1 |
SSR-Steel 6 | 25.0 ± 3.6 |
SSR-Graphite 3 | 14.9 ± 1.9 |
SSR-Graphite 4 | 11.1 ± 1.2 |
SSR-Graphite 5 | 15.5 ± 1.4 |
SSR-Graphite 6 | 17.1 ± 1.4 |
SGP-Graphite 1 | 30.2 ± 3.0 |
SGP-Graphite 2 | 39.4 ± 2.0 |
SGP-Graphite 3 | 27.6 ± 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanemann, T.; Ade, M.; Cimen, E.; Schoenfelder, J.; Honnef, K.; Wapler, M.; Ketterer, I. Barium Strontium Titanate: Comparison of Material Properties Obtained via Solid-State and Sol–Gel Synthesis. Ceramics 2025, 8, 126. https://doi.org/10.3390/ceramics8040126
Hanemann T, Ade M, Cimen E, Schoenfelder J, Honnef K, Wapler M, Ketterer I. Barium Strontium Titanate: Comparison of Material Properties Obtained via Solid-State and Sol–Gel Synthesis. Ceramics. 2025; 8(4):126. https://doi.org/10.3390/ceramics8040126
Chicago/Turabian StyleHanemann, Thomas, Martin Ade, Emine Cimen, Julia Schoenfelder, Kirsten Honnef, Matthias Wapler, and Ines Ketterer. 2025. "Barium Strontium Titanate: Comparison of Material Properties Obtained via Solid-State and Sol–Gel Synthesis" Ceramics 8, no. 4: 126. https://doi.org/10.3390/ceramics8040126
APA StyleHanemann, T., Ade, M., Cimen, E., Schoenfelder, J., Honnef, K., Wapler, M., & Ketterer, I. (2025). Barium Strontium Titanate: Comparison of Material Properties Obtained via Solid-State and Sol–Gel Synthesis. Ceramics, 8(4), 126. https://doi.org/10.3390/ceramics8040126