Previous Issue
Volume 5, June
 
 

Geomatics, Volume 5, Issue 3 (September 2025) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
24 pages, 10881 KiB  
Article
Dynamics of Water Quality in the Mirim–Patos–Mangueira Coastal Lagoon System with Sentinel-3 OLCI Data
by Paula Andrea Contreras Rojas, Felipe de Lucia Lobo, Wesley J. Moses, Gilberto Loguercio Collares and Lino Sander de Carvalho
Geomatics 2025, 5(3), 36; https://doi.org/10.3390/geomatics5030036 - 25 Jul 2025
Viewed by 320
Abstract
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the [...] Read more.
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the spatial and temporal patterns of water quality in the lagoon system using Sentinel-3/OLCI satellite imagery. Atmospheric correction was performed using ACOLITE, followed by spectral grouping and classification into optical water types (OWTs) using the Sentinel Applications Platform (SNAP). To explore the behavior of water quality parameters across OWTs, Chlorophyll-a and turbidity were estimated using semi-empirical algorithms specifically designed for complex inland and coastal waters. Results showed a gradual increase in mean turbidity from OWT 2 to OWT 6 and a rise in chlorophyll-a from OWT 2 to OWT 4, with a decline at OWT 6. These OWTs correspond, in general terms, to distinct water masses: OWT 2 to clearer waters, OWT 3 and 4 to intermediate/mixed conditions, and OWT 6 to turbid environments. In the second part, we analyzed the response of the Patos Lagoon to flooding in Rio Grande do Sul during an extreme weather event in May 2024. Satellite-derived turbidity estimates were compared with in situ measurements, revealing a systematic underestimation, with a negative bias of 2.6%, a mean relative error of 78%, and a correlation coefficient of 0.85. The findings highlight the utility of OWT classification for tracking changes in water quality and support the use of remote sensing tools to improve environmental monitoring in data-scarce regions, particularly under extreme hydrometeorological conditions. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Hydrospatial Applications)
Show Figures

Figure 1

12 pages, 3579 KiB  
Communication
Physics-Informed Gaussian-Enforced Separated-Band Convolutional Conversion Network for Moving Object Satellite Image Conversion
by Andrew J. Lew, Timothy Perkins, Ethan Brewer, Paul Corlies and Robert Sundberg
Geomatics 2025, 5(3), 35; https://doi.org/10.3390/geomatics5030035 - 23 Jul 2025
Viewed by 268
Abstract
Integrating diverse image datasets acquired from different satellites is challenging. Converting images from one sensor to another, like from WorldView-3 (WV) to SuperDove (SD), involves both changing image channel wavelengths and per-band intensity scales because different sensors can acquire imagery of the same [...] Read more.
Integrating diverse image datasets acquired from different satellites is challenging. Converting images from one sensor to another, like from WorldView-3 (WV) to SuperDove (SD), involves both changing image channel wavelengths and per-band intensity scales because different sensors can acquire imagery of the same scene at different wavelengths and intensities. A parametrized convolutional network approach has shown promise converting across sensor domains, but it introduces distortion artefacts when objects are in motion. The cause of spectral distortion is due to temporal delays between sequential multispectral band acquisitions. This can result in spuriously blurred images of moving objects in the converted imagery, and consequently misaligned moving object locations across image bands. To resolve this, we propose an enhanced model, the Physics-Informed Gaussian-Enforced Separated-Band Convolutional Conversion Network (PIGESBCCN), which better accounts for known spatial, spectral, and temporal correlations between bands via band reordering and branched model architecture. Full article
Show Figures

Figure 1

23 pages, 4594 KiB  
Article
Ensemble Machine Learning Approaches for Bathymetry Estimation in Multi-Spectral Images
by Kazi Aminul Islam, Omar Abul-Hassan, Hongfang Zhang, Victoria Hill, Blake Schaeffer, Richard Zimmerman and Jiang Li
Geomatics 2025, 5(3), 34; https://doi.org/10.3390/geomatics5030034 - 22 Jul 2025
Viewed by 271
Abstract
Traditional bathymetry measures require a large number of human hours, and many bathymetry records are obsolete or missing. Automated measures of bathymetry would reduce costs and increase accessibility for research and applications. In this paper, we optimized a recent machine learning model, named [...] Read more.
Traditional bathymetry measures require a large number of human hours, and many bathymetry records are obsolete or missing. Automated measures of bathymetry would reduce costs and increase accessibility for research and applications. In this paper, we optimized a recent machine learning model, named CatBoostOpt, to estimate bathymetry based on high-resolution WorldView-2 (WV-2) multi-spectral optical satellite images. CatBoostOpt was demonstrated across the Florida Big Bend coastline, where the model learned correlations between in situ sound Navigation and Ranging (Sonar) bathymetry measurements and the corresponding multi-spectral reflectance values in WV-2 images to map bathymetry. We evaluated three different feature transformations as inputs for bathymetry estimation, including raw reflectance, log-linear, and log-ratio transforms of the raw reflectance value in WV-2 images. In addition, we investigated the contribution of each spectral band and found that utilizing all eight spectral bands in WV-2 images offers the best solution for handling complex water quality conditions. We compared CatBoostOpt with linear regression (LR), support vector machine (SVM), random forest (RF), AdaBoost, gradient boosting, and deep convolutional neural network (DCNN). CatBoostOpt with log-ratio transformed reflectance achieved the best performance with an average root mean square error (RMSE) of 0.34 and coefficient of determination (R2) of 0.87. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Hydrospatial Applications)
Show Figures

Figure 1

15 pages, 4609 KiB  
Perspective
HAIMO: A Hybrid Approach to Trajectory Interaction Analysis Combining Knowledge-Driven and Data-Driven AI
by Nico Van de Weghe, Lars De Sloover, Jana Verdoodt and Haosheng Huang
Geomatics 2025, 5(3), 33; https://doi.org/10.3390/geomatics5030033 - 22 Jul 2025
Viewed by 226
Abstract
Capturing the interactions between moving objects is vital in traffic analysis, sports, and animal behavior, but remains challenging because of subtle spatiotemporal dynamics. This paper introduces HAIMO (Hybrid Analysis of the Interaction of Moving Objects), a conceptual framework that combines knowledge-driven AI for [...] Read more.
Capturing the interactions between moving objects is vital in traffic analysis, sports, and animal behavior, but remains challenging because of subtle spatiotemporal dynamics. This paper introduces HAIMO (Hybrid Analysis of the Interaction of Moving Objects), a conceptual framework that combines knowledge-driven AI for interpretable, symbolic interaction representations with data-driven models trained through self-supervised learning (SSL) on large sets of unlabeled trajectory data. In HAIMO, we propose using transformer architectures to model complex spatiotemporal dependencies while maintaining interpretability through symbolic reasoning. To illustrate the feasibility of this hybrid approach, we present a basic proof-of-concept using elite tennis rallies, where the knowledge-driven component identifies interaction patterns between players and the ball, and we outline how SSL-enhanced transformer models could support and strengthen movement prediction. By bridging symbolic reasoning and self-supervised data-driven learning, HAIMO provides a conceptual foundation for future GeoAI and spatiotemporal analytics, especially in applications where both pattern discovery and explainability are crucial. Full article
Show Figures

Figure 1

25 pages, 16927 KiB  
Article
Improving Individual Tree Crown Detection and Species Classification in a Complex Mixed Conifer–Broadleaf Forest Using Two Machine Learning Models with Different Combinations of Metrics Derived from UAV Imagery
by Jeyavanan Karthigesu, Toshiaki Owari, Satoshi Tsuyuki and Takuya Hiroshima
Geomatics 2025, 5(3), 32; https://doi.org/10.3390/geomatics5030032 - 13 Jul 2025
Viewed by 643
Abstract
Individual tree crown detection (ITCD) and tree species classification are critical for forest inventory, species-specific monitoring, and ecological studies. However, accurately detecting tree crowns and identifying species in structurally complex forests with overlapping canopies remains challenging. This study was conducted in a complex [...] Read more.
Individual tree crown detection (ITCD) and tree species classification are critical for forest inventory, species-specific monitoring, and ecological studies. However, accurately detecting tree crowns and identifying species in structurally complex forests with overlapping canopies remains challenging. This study was conducted in a complex mixed conifer–broadleaf forest in northern Japan, aiming to improve ITCD and species classification by employing two machine learning models and different combinations of metrics derived from very high-resolution (2.5 cm) UAV red–green–blue (RGB) and multispectral (MS) imagery. We first enhanced ITCD by integrating different combinations of metrics into multiresolution segmentation (MRS) and DeepForest (DF) models. ITCD accuracy was evaluated across dominant forest types and tree density classes. Next, nine tree species were classified using the ITCD outputs from both MRS and DF approaches, applying Random Forest and DF models, respectively. Incorporating structural, textural, and spectral metrics improved MRS-based ITCD, achieving F-scores of 0.44–0.58. The DF model, which used only structural and spectral metrics, achieved higher F-scores of 0.62–0.79. For species classification, the Random Forest model achieved a Kappa value of 0.81, while the DF model attained a higher Kappa value of 0.91. These findings demonstrate the effectiveness of integrating UAV-derived metrics and advanced modeling approaches for accurate ITCD and species classification in heterogeneous forest environments. The proposed methodology offers a scalable and cost-efficient solution for detailed forest monitoring and species-level assessment. Full article
Show Figures

Figure 1

3 pages, 137 KiB  
Editorial
Back to Geomatics: Recognizing Who We Are
by Enrico Corrado Borgogno-Mondino
Geomatics 2025, 5(3), 31; https://doi.org/10.3390/geomatics5030031 - 7 Jul 2025
Viewed by 325
Abstract
Recently, geomatics-related data, products, services and applications have proven to significantly support many actions in environmental (land, water, extra-terrestrial) analysis, management and protection, often answering to political instances [...] Full article
18 pages, 18039 KiB  
Article
Can Combining Machine Learning Techniques and Remote Sensing Data Improve the Accuracy of Aboveground Biomass Estimations in Temperate Forests of Central Mexico?
by Martin Enrique Romero-Sanchez, Antonio Gonzalez-Hernandez, Efraín Velasco-Bautista, Arian Correa-Diaz, Alma Delia Ortiz-Reyes and Ramiro Perez-Miranda
Geomatics 2025, 5(3), 30; https://doi.org/10.3390/geomatics5030030 - 3 Jul 2025
Viewed by 351
Abstract
Estimating aboveground biomass (AGB) is crucial for understanding the carbon cycle in terrestrial ecosystems, particularly within the context of climate change. Therefore, it is essential to research and compare different methods of AGB estimation to achieve acceptable accuracy. This study modelled AGB in [...] Read more.
Estimating aboveground biomass (AGB) is crucial for understanding the carbon cycle in terrestrial ecosystems, particularly within the context of climate change. Therefore, it is essential to research and compare different methods of AGB estimation to achieve acceptable accuracy. This study modelled AGB in temperate forests of central Mexico using active and passive remote sensing data combined with machine learning techniques (Random Forest and XGBoost) and compared the estimations against a traditional method, such as linear regression. The main goal was to evaluate the performance of machine learning techniques against linear regression in AGB estimation and then validate against an independent forest inventory database. The models obtained acceptable performance in all cases, but the machine learning algorithm Random Forest outperformed (R2cv = 0.54; RMSEcv = 19.17) the regression method (R2cv = 0.41; RMSEcv = 25.76). The variables that made significant contributions, in both Random Forest and XGBoost modelling, were NDVI, kNDVI (Landsat OLI sensor), and the HV polarisation from ALOS-Palsar. For validation, the Machine learning ensemble had a higher Spearman correlation (r = 0.68) than the linear regression (r = 0.50). These findings highlight the potential of integrating machine learning techniques with remote sensing data to improve the reliability of AGB estimation in temperate forests. Full article
Show Figures

Figure 1

20 pages, 23317 KiB  
Article
Land Use and Land Cover (LULC) Mapping Accuracy Using Single-Date Sentinel-2 MSI Imagery with Random Forest and Classification and Regression Tree Classifiers
by Sercan Gülci, Michael Wing and Abdullah Emin Akay
Geomatics 2025, 5(3), 29; https://doi.org/10.3390/geomatics5030029 - 1 Jul 2025
Viewed by 571
Abstract
The use of Google Earth Engine (GEE), a cloud-based computing platform, in spatio-temporal evaluation studies has increased rapidly in natural sciences such as forestry. In this study, Sentinel-2 satellite imagery and Shuttle Radar Topography Mission (SRTM) elevation data and image classification algorithms based [...] Read more.
The use of Google Earth Engine (GEE), a cloud-based computing platform, in spatio-temporal evaluation studies has increased rapidly in natural sciences such as forestry. In this study, Sentinel-2 satellite imagery and Shuttle Radar Topography Mission (SRTM) elevation data and image classification algorithms based on two machine learning techniques were examined. Random Forest (RF) and Classification and Regression Trees (CART) were used to classify land use and land cover (LULC) in western Oregon (USA). To classify the LULC from the spectral bands of satellite images, a composition consisting of vegetation difference indices NDVI, NDWI, EVI, and BSI, and a digital elevation model (DEM) were used. The study area was selected due to a diversity of land cover types including research forest, botanical gardens, recreation area, and agricultural lands covered with diverse plant species. Five land classes (forest, agriculture, soil, water, and settlement) were delineated for LULC classification testing. Different spatial points (totaling 75, 150, 300, and 2500) were used as training and test data. The most successful model performance was RF, with an accuracy of 98% and a kappa value of 0.97, while the accuracy and kappa values for CART were 95% and 0.94, respectively. The accuracy of the generated LULC maps was evaluated using 500 independent reference points, in addition to the training and testing datasets. Based on this assessment, the RF classifier that included elevation data achieved an overall accuracy of 92% and a kappa coefficient of 0.90. The combination of vegetation difference indices with elevation data was successful in determining the areas where clear-cutting occurred in the forest. Our results present a promising technique for the detection of forests and forest openings, which was helpful in identifying clear-cut sites. In addition, the GEE and RF classifier can help identify and map storm damage, wind damage, insect defoliation, fire, and management activities in forest areas. Full article
Show Figures

Figure 1

16 pages, 3382 KiB  
Article
An Evaluation of Static Affordable Smartphone Positioning Performance Leveraging GPS/Galileo Measurements with Instantaneous CNES and Final IGS Products
by Mohamed Abdelazeem, Hussain A. Kamal, Amgad Abazeed and Amr M. Wahaballa
Geomatics 2025, 5(3), 28; https://doi.org/10.3390/geomatics5030028 - 27 Jun 2025
Viewed by 320
Abstract
This research examines the performance of the affordable Xiaomi 11T smartphone in static positioning mode. Static Global Navigation Satellite System (GNSS) measurements are acquired over a two-hour period with a known reference point, spanning three consecutive days. The acquired data are processed, employing [...] Read more.
This research examines the performance of the affordable Xiaomi 11T smartphone in static positioning mode. Static Global Navigation Satellite System (GNSS) measurements are acquired over a two-hour period with a known reference point, spanning three consecutive days. The acquired data are processed, employing both real-time and post-processing Precise Point Positioning (PPP) solutions using GPS-only, Galileo-only, and the combined GPS/Galileo datasets. To correct the satellite and clock errors, the instantaneous Centre National d’Études Spatiales (CNES), the final Le Groupe de Recherche de Géodésie Spatiale (GRG), GeoForschungsZentrum (GFZ), and Wuhan University (WUM) products were applied. The results demonstrate that sub-30 cm positioning accuracy is achieved in the horizontal direction using real-time and final products. Additionally, sub-50 cm positioning accuracy is attained in the vertical direction for the real-time and post-processed solutions. Furthermore, the real-time products achieved three-dimensional (3D) position accuracies of 40 cm, 29 cm, and 20 cm using GPS-only, Galileo-only, and the combined GPS/Galileo observations, respectively. The final products achieved 3D position accuracies of 24 cm, 26 cm, and 28 cm using GPS-only, Galileo-only, and the combined GPS/Galileo measurements, respectively. The attained positioning accuracy can be used in some land use and urban planning applications. Full article
Show Figures

Figure 1

42 pages, 1966 KiB  
Review
Cloud Detection Methods for Optical Satellite Imagery: A Comprehensive Review
by Rohit Singh, Mahesh Pal and Mantosh Biswas
Geomatics 2025, 5(3), 27; https://doi.org/10.3390/geomatics5030027 - 26 Jun 2025
Viewed by 813
Abstract
With the continuous advancement of remote sensing technology and its growing importance, the need for ready-to-use data has increased exponentially. Satellite platforms such as Sentinel-2, which carries the Multispectral Instrument (MSI) sensor, known for their cost-effectiveness, capture valuable information about Earth in the [...] Read more.
With the continuous advancement of remote sensing technology and its growing importance, the need for ready-to-use data has increased exponentially. Satellite platforms such as Sentinel-2, which carries the Multispectral Instrument (MSI) sensor, known for their cost-effectiveness, capture valuable information about Earth in the form of images. However, they encounter a significant challenge in the form of clouds and their shadows, which hinders the data acquisition and processing for regions of interest. This article undertakes a comprehensive literature review to systematically analyze the critical cloud-related challenges. It explores the need for accurate cloud detection, reviews existing datasets, and evaluates contemporary cloud detection methodologies, including their strengths and limitations. Additionally, it highlights the inaccuracies introduced by varying atmospheric and environmental conditions, emphasizing the importance of integrating advanced techniques that can utilize local and global semantics. The review also introduces a structured intercomparison framework to enable standardized evaluation across binary and multiclass cloud detection methods using both qualitative and quantitative metrics. To facilitate fair comparison, a conversion mechanism is highlighted to harmonize outputs across methods with different class granularities. By identifying gaps in current practices and datasets, the study highlights the importance of innovative, efficient, and scalable solutions for automated cloud detection, paving the way for unbiased evaluation and improved utilization of satellite imagery across diverse applications. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop