Modelling the Spatial Distribution of Soil Organic Carbon Using Machine Learning and Remote Sensing in Nevado de Toluca, Mexico
Abstract
Highlights
- The Quadratic Support Vector Machine using NDVI, elevation, and land use achieved high accuracy (R2 = 0.84) for predicting soil organic carbon (SOC) in the volcanic landscape of Nevado de Toluca.
- Models using NDVI and BSI consistently outperformed those using MSAVI2 for SOC estimation, highlighting differences among vegetation indices in heterogeneous mountain terrains.
- Integrating multispectral remote sensing indices with machine learning enables accurate and cost-effective SOC mapping in ecologically complex areas.
- The approach supports scalable carbon monitoring and informs sustainable land management and conservation strategies in mountainous ecosystems.
Abstract
1. Introduction
Study Area
2. Materials and Methods
2.1. Sampling and Laboratory Analysis
2.2. Remote Sensing
2.3. Machine Learning
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Midgley, G.F.; Bond, W.J.; Kapos, V.; Ravilious, C.; Scharlemann, J.P.; Woodward, F.I. Terrestrial carbon stocks and biodiversity: Key knowledge gaps and some policy implications. Curr. Opin. Environ. Sustain. 2010, 2, 264–270. [Google Scholar] [CrossRef]
- Navarrete-Segueda, A.; Martínez-Ramos, M.; Ibarra-Manríquez, G.; Vázquez-Selem, L.; Siebe, C. Variation of main terrestrial carbon stocks at the landscape-scale are shaped by soil in a tropical rainforest. Geoderma 2018, 313, 57–68. [Google Scholar] [CrossRef]
- Schimel, D.S. Terrestrial biogeochemical cycles: Global estimates with remote sensing. Remote Sens. Environ. 1995, 51, 49–56. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef] [PubMed]
- Tagesson, T.; Schurgers, G.; Horion, S.; Ciais, P.; Tian, F.; Brandt, M.; Ahlström, A.; Wigneron, J.-P.; Ardö, J.; Olin, S.; et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 2020, 4, 202–209. [Google Scholar] [CrossRef]
- Romero-Sanchez, M.E.; Gonzalez-Hernandez, A.; Velasco-Bautista, E.; Correa-Diaz, A.; Ortiz-Reyes, A.D.; Perez-Miranda, R. Can Combining Machine Learning Techniques and Remote Sensing Data Improve the Accuracy of Aboveground Biomass Estimations in Temperate Forests of Central Mexico? Geomatics 2025, 5, 30. [Google Scholar] [CrossRef]
- Ray, G.; Singh, M. Tropical Forest Carbon Accounting Through Deep Learning-Based Species Mapping and Tree Crown Delineation. Geomatics 2025, 5, 15. [Google Scholar] [CrossRef]
- Patton, N.R.; Lohse, K.A.; Seyfried, M.S.; Godsey, S.E.; Parsons, S.B. Topographic controls of soil organic carbon on soil-mantled landscapes. Sci. Rep. 2019, 9, 6390. [Google Scholar] [CrossRef]
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Georgiou, K.; Jackson, R.B.; Vindušková, O.; Abramoff, R.Z.; Ahlström, A.; Feng, W.; Harden, J.W.; Pellegrini, A.F.A.; Polley, H.W.; Soong, J.L.; et al. Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun. 2022, 13, 3797. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Lal, R. Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon Emissions and Advancing Global Food Security. Bioscience 2010, 60, 708–721. [Google Scholar] [CrossRef]
- Ross, C.W.; Grunwald, S.; Myers, D.B. Spatiotemporal modeling of soil organic carbon stocks across a subtropical region. Sci. Total Environ. 2013, 461–462, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Bréchet, L.M.; Lopez-Sangil, L.; George, C.; Birkett, A.J.; Baxendale, C.; Trujillo, B.C.; Sayer, E.J. Distinct responses of soil respiration to experimental litter manipulation in temperate woodland and tropical forest. Ecol. Evol. 2018, 8, 3787–3796. [Google Scholar] [CrossRef] [PubMed]
- Eze, S.; Magilton, M.; Magnone, D.; Varga, S.; Gould, I.; Mercer, T.G.; Goddard, M.R. Meta-analysis of global soil data identifies robust indicators for short-term changes in soil organic carbon stock following land use change. Sci. Total Environ. 2023, 860, 160484. [Google Scholar] [CrossRef] [PubMed]
- Rieke, E.L.; Bagnall, D.K.; Morgan, C.L.; Flynn, K.D.; Howe, J.A.; Greub, K.L.; Mac Bean, G.; Cappellazzi, S.B.; Cope, M.; Liptzin, D.; et al. Evaluation of aggregate stability methods for soil health. Geoderma 2022, 428, 116156. [Google Scholar] [CrossRef]
- Abegaz, A.; Winowiecki, L.A.; Vågen, T.-G.; Langan, S.; Smith, J.U. Spatial and temporal dynamics of soil organic carbon in landscapes of the upper Blue Nile Basin of the Ethiopian Highlands. Agric. Ecosyst. Environ. 2016, 218, 190–208. [Google Scholar] [CrossRef]
- Liptzin, D.; Norris, C.E.; Cappellazzi, S.B.; Mac Bean, G.; Cope, M.; Greub, K.L.; Rieke, E.L.; Tracy, P.W.; Aberle, E.; Ashworth, A.; et al. An evaluation of carbon indicators of soil health in long-term agricultural experiments. Soil Biol. Biochem. 2022, 172, 108708. [Google Scholar] [CrossRef]
- Rodrigues, C.I.D.; Brito, L.M.; Nunes, L.J.R. Soil Carbon Sequestration in the Context of Climate Change Mitigation: A Review. Soil Syst. 2023, 7, 64. [Google Scholar] [CrossRef]
- Jagadamma, S.; Lal, R. Distribution of organic carbon in physical fractions of soils as affected by agricultural management. Biol. Fertil. Soils 2010, 46, 543–554. [Google Scholar] [CrossRef]
- Li, L.; Wang, B.; Feng, P.; Liu, D.L.; He, Q.; Zhang, Y.; Wang, Y.; Li, S.; Lu, X.; Yue, C.; et al. Developing machine learning models with multi-source environmental data to predict wheat yield in China. Comput. Electron. Agric. 2022, 194, 106790. [Google Scholar] [CrossRef]
- Sellan, G.; Thompson, J.; Majalap, N.; Robert, R.; Brearley, F.Q. Impact of soil nitrogen availability and pH on tropical heath forest organic matter decomposition and decomposer activity. Pedobiologia 2020, 80, 150645. [Google Scholar] [CrossRef]
- Golchin, A.; Misaghi, M. Investigating the effects of climate change and anthropogenic activities on SOC storage and cumulative CO2 emissions in forest soils across altitudinal gradients using the century model. Sci. Total Environ. 2024, 943, 173758. [Google Scholar] [CrossRef]
- Roberts, N.J.; Harihar, A.; Zhou, X.; She, W.; Jiang, G. Global Tiger Density Linked with Forest Carbon Stock, Top-Down and Bottom-Up. Glob. Change Biol. 2025, 31, e70191. [Google Scholar] [CrossRef] [PubMed]
- Houghton, R.A.; Nassikas, A.A. Negative emissions from stopping deforestation and forest degradation, globally. Glob. Change Biol. 2018, 24, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Zhai, T.; Wang, J.; Fang, Y.; Qin, Y.; Huang, L.; Chen, Y. Assessing ecological risks caused by human activities in rapid urbanization coastal areas: Towards an integrated approach to determining key areas of terrestrial-oceanic ecosystems preservation and restoration. Sci. Total Environ. 2020, 708, 135153. [Google Scholar] [CrossRef] [PubMed]
- Parras-Alcántara, L.; Lozano-García, B.; Galán-Espejo, A. Soil organic carbon along an altitudinal gradient in the Despeñaperros Natural Park, southern Spain. Solid Earth 2015, 6, 125–134. [Google Scholar] [CrossRef]
- Seifu, W.; Elias, E.; Gebresamuel, G.; Khanal, S. Impact of land use type and altitudinal gradient on topsoil organic carbon and nitrogen stocks in the semi-arid watershed of northern Ethiopia. Heliyon 2021, 7, e06770. [Google Scholar] [CrossRef]
- Zhang, H.; Zhuang, S.; Qian, H.; Wang, F.; Ji, H. Spatial Variability of the Topsoil Organic Carbon in the Moso Bamboo Forests of Southern China in Association with Soil Properties. PLoS ONE 2015, 10, e0119175. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Change Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Jat, M.L.; Chakraborty, D.; Ladha, J.K.; Parihar, C.M.; Datta, A.; Mandal, B.; Nayak, H.S.; Maity, P.; Rana, D.S.; Chaudhari, S.K.; et al. Carbon sequestration potential, challenges, and strategies towards climate action in smallholder agricultural systems of South Asia. Crop Environ. 2022, 1, 86–101. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: A review and synthesis. Geoderma 2010, 155, 211–223. [Google Scholar] [CrossRef]
- Goodman, J.M.; Owens, P.R.; Libohova, Z. Predicting soil organic carbon using mixed conceptual and geostatistical models. In Digital Soil Assessments and Beyond; CRC Press: Boca Raton, FL, USA, 2012; pp. 155–161. [Google Scholar] [CrossRef]
- Winzeler, H.E.; Owens, P.R.; Waltman, S.W.; Libohova, Z.; Waltman, W.J. Soil climate indicators from the Geographically Explicit Newhall Simulation Model (GEN) as potential environmental covariates in digital soil mapping applications. In Digital Soil Assessments and Beyond; CRC Press: Boca Raton, FL, USA, 2012; pp. 167–171. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/b12728-36/soil-climate-indicators-geographically-explicit-newhall-simulation-model-gen-potential-environmental-covariates-digital-soil-mapping-applications-winzeler-owens-waltman-libohova-waltman?context=ubx&refId=eb5016f9-afcb-4265-9b05-d8ee1c9ef9b2 (accessed on 31 May 2025).
- Mirzaee, S.; Ghorbani-Dashtaki, S.; Mohammadi, J.; Asadi, H.; Asadzadeh, F. Spatial variability of soil organic matter using remote sensing data. Catena 2016, 145, 118–127. [Google Scholar] [CrossRef]
- Wehrhan, M.; Sommer, M. A Parsimonious Approach to Estimate Soil Organic Carbon Applying Unmanned Aerial System (UAS) Multispectral Imagery and the Topographic Position Index in a Heterogeneous Soil Landscape. Remote Sens. 2021, 13, 3557. [Google Scholar] [CrossRef]
- Dvorakova, K.; Shi, P.; Limbourg, Q.; van Wesemael, B. Soil Organic Carbon Mapping from Remote Sensing: The Effect of Crop Residues. Remote. Sens. 2020, 12, 1913. [Google Scholar] [CrossRef]
- Garosi, Y.; Ayoubi, S.; Nussbaum, M.; Sheklabadi, M.; Nael, M.; Kimiaee, I. Use of the time series and multi-temporal features of Sentinel-1/2 satellite imagery to predict soil inorganic and organic carbon in a low-relief area with a semi-arid environment. Int. J. Remote. Sens. 2022, 43, 6856–6880. [Google Scholar] [CrossRef]
- Suleymanov, A.; Tuktarova, I.; Belan, L.; Suleymanov, R.; Gabbasova, I.; Araslanova, L. Spatial prediction of soil properties using random forest, k-nearest neighbors and cubist approaches in the foothills of the Ural Mountains, Russia. Model. Earth Syst. Environ. 2023, 9, 3461–3471. [Google Scholar] [CrossRef]
- Muñoz, A.S.M.; Alvis, Á.I.G.; Martínez, I.F.B. A random forest model to predict soil organic carbon storage in mangroves from Southern Colombian Pacific coast. Estuar. Coast. Shelf Sci. 2024, 299, 108674. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, X.; Guo, X.; Li, Y. Mapping of soil organic carbon using machine learning models: Combination of optical and radar remote sensing data. Soil Sci. Soc. Am. J. 2022, 86, 293–310. [Google Scholar] [CrossRef]
- Gomes, L.C.; Faria, R.M.; de Souza, E.; Veloso, G.V.; Schaefer, C.E.G.R.; Filho, E.I.F. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma 2019, 340, 337–350. [Google Scholar] [CrossRef]
- Ismail, M.; Roy, S.K.; Dey, T.; Basak, J.K.; Chowdhury, M.A.A.; Ullah, F.; Ahmed, S. Carbon sequestration potential of Sonneratia apetala plantation forests in the Chakaria Sundarbans: Effects of stand age and structure. Reg. Stud. Mar. Sci. 2025, 84, 104104. [Google Scholar] [CrossRef]
- Parvizi, Y.; Fatehi, S. Geospatial digital mapping of soil organic carbon using machine learning and geostatistical methods in different land uses. Sci. Rep. 2025, 15, 4449. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, F.; Schillaci, C. Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation. Ecol. Indic. 2019, 101, 1032–1044. [Google Scholar] [CrossRef]
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Decreto que Reforma, Deroga y Adiciona Diversas Disposiciones del Diverso Publicado el 25 de Enero de 1936, por el que se Declaró Parque Nacional la Montaña Denominada “Nevado de Toluca” que fue Modificado por el Diverso Publicado el 19 de Febrero de 1937. 2013. Available online: https://www.gob.mx/cms/uploads/attachment/file/116130/01_10_13_DECRETO_que_reforma__deroga_y_adiciona_diversas_disposiciones_del_PN_Nevado_de_Toluca.pdf (accessed on 31 May 2025).
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT); Comisión Nacional de Áreas Naturales Protegidas (CONANP). Programa de Manejo Área de Protección de Flora y Fauna Nevado de Toluca. 2016. Available online: https://simec.conanp.gob.mx/pdf_libro_pm/104_libro_pm.pdf (accessed on 3 September 2025).
- Inostroza, C.C.; Reyes, P.M. Estado de México: Instituciones, Políticas Públicas y Actividad Productiva; El Colegio Mexiquense: Zinacantepec, Mexico, 2022. [Google Scholar]
- Agramont, A.R.E.; Maass, S.F.; Bernal, G.N.; Hernández, J.I.V.; Fredericksen, T.S. Effect of human disturbance on the structure and regeneration of forests in the Nevado de Toluca National Park, Mexico. J. For. Res. 2012, 23, 39–44. [Google Scholar] [CrossRef]
- de Estadística y Geografía, I.N. Continuo de Elevaciones Mexicano y Modelos Digitales de Elevación. Available online: https://www.inegi.org.mx/app/geo2/elevacionesmex/ (accessed on 31 May 2025).
- Fusaro, C.; Sarria-Guzmán, Y.; Chávez-Romero, Y.A.; Luna-Guido, M.; Muñoz-Arenas, L.C.; Dendooven, L.; Estrada-Torres, A.; Navarro-Noya, Y.E. Land use is the main driver of soil organic carbon spatial distribution in a high mountain ecosystem. PeerJ 2019, 7, e7897. [Google Scholar] [CrossRef]
- EOS Data Analytics Inc. Sentinel-2 Imagery: View and Download Satellite Data. Available online: https://eos.com/find-satellite/sentinel-2/ (accessed on 4 April 2025).
- REMSEM—OD Nature Remote Sensing and Ecosystem Modelling Team, ACOLITE. Available online: https://odnature.naturalsciences.be/remsem/software-and-data/acolite (accessed on 4 April 2025).
- Liu, Q.; He, L.; Guo, L.; Wang, M.; Deng, D.; Lv, P.; Wang, R.; Jia, Z.; Hu, Z.; Wu, G.; et al. Digital mapping of soil organic carbon density using newly developed bare soil spectral indices and deep neural network. Catena 2022, 219, 106603. [Google Scholar] [CrossRef]
- Salas, E.A.L.; Kumaran, S.S. Perimeter-Area Soil Carbon Index (PASCI): Modeling and estimating soil organic carbon using relevant explicatory waveband variables in machine learning environment. Geo-Spat. Inf. Sci. 2024, 27, 1739–1746. [Google Scholar] [CrossRef]
- Bartholomeus, H.M.; Schaepman, M.E.; Kooistra, L.; Stevens, A.; Hoogmoed, W.B.; Spaargaren, O.S.P. Spectral reflectance based indices for soil organic carbon quantification. Geoderma 2008, 145, 28–36. [Google Scholar] [CrossRef]
- The MathWorks Inc. Linear Regression. Available online: https://la.mathworks.com/help/stats/linear-regression-model-workflow.html (accessed on 27 March 2025).
- The MathWorks Inc. Stepwise Regression. Available online: https://la.mathworks.com/help/stats/stepwise-regression.html (accessed on 27 March 2025).
- The MathWorks Inc. Linear Least Squares. Available online: https://ch.mathworks.com/help/optim/linear-least-squares.html (accessed on 30 March 2025).
- The MathWorks Inc. Regression Kernel. Available online: https://la.mathworks.com/help/stats/regressionkernel.html (accessed on 27 March 2025).
- The MathWorks Inc. Support Vector Machine Regression. Available online: https://ch.mathworks.com/help/stats/support-vector-machine-regression.html (accessed on 30 March 2025).
- The MathWorks Inc. Regression Trees. Available online: https://ch.mathworks.com/help/stats/regression-trees.html (accessed on 27 March 2025).
- The MathWorks Inc. Ensemble Algorithms. Available online: https://la.mathworks.com/help/stats/ensemble-algorithms.html (accessed on 27 March 2025).
- The MathWorks Inc. Gaussian Process Regression Models. Available online: https://la.mathworks.com/help/stats/gaussian-process-regression-models.html (accessed on 27 March 2025).
- The MathWorks Inc. RegressionNeuralNetwork. Available online: https://ch.mathworks.com/help/stats/regressionneuralnetwork.html (accessed on 30 March 2025).
- The MathWorks Inc. Coefficient of Determination (R-Squared). Available online: https://ch.mathworks.com/help/stats/coefficient-of-determination-r-squared.html (accessed on 27 March 2025).
- Dodge, A. Coefficient of Determination. In The Concise Encyclopedia of Statistics; Springer: New York, NY, USA, 2008; pp. 88–91. [Google Scholar] [CrossRef]
- The MathWorks Inc. Root Mean Squared Error. Available online: https://ch.mathworks.com/help/matlab/ref/rmse.html (accessed on 27 March 2025).
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model. Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- The MathWorks Inc. Mean Squared Error. Available online: https://ch.mathworks.com/help/deeplearning/ref/dlarray.mse.html (accessed on 27 March 2025).
- The MathWorks Inc. Mean Squared Error. Available online: https://ch.mathworks.com/help/deeplearning/ref/mae.html (accessed on 27 March 2025).
- Kim, S.; Kim, H. A new metric of absolute percentage error for intermittent demand forecasts. Int. J. Forecast. 2016, 32, 669–679. [Google Scholar] [CrossRef]
- The MathWorks Inc. Mape. Available online: https://ch.mathworks.com/help/matlab/ref/mape.html (accessed on 30 March 2025).
- Merino, A.; Omil, B.; Piñeiro, V.; Barros, N.; Souza-Alonso, P.; Campo, J. Soil C dynamics after deforestation and subsequent conversion of arable cropland to grassland in humid temperate areas. Sci. Total Environ. 2023, 901, 165793. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Liu, C.; Jia, X.; Zhu, J. Changing soil organic carbon with land use and management practices in a thousand-year cultivation region. Agric. Ecosyst. Environ. 2021, 322, 107639. [Google Scholar] [CrossRef]
- Smith, P. Land use change and soil organic carbon dynamics. Nutr. Cycl. Agroecosyst. 2008, 81, 169–178. [Google Scholar] [CrossRef]
- Beillouin, D.; Corbeels, M.; Demenois, J.; Berre, D.; Boyer, A.; Fallot, A.; Feder, F.; Cardinael, R. A global meta-analysis of soil organic carbon in the Anthropocene. Nat. Commun. 2023, 14, 3700. [Google Scholar] [CrossRef]
- Ferreira, A.C.C.; Leite, L.F.C.; de Araújo, A.S.F.; Eisenhauer, N. Land-Use Type Effects on Soil Organic Carbon and Microbial Properties in a Semi-arid Region of Northeast Brazil. Land Degrad. Dev. 2016, 27, 171–178. [Google Scholar] [CrossRef]
- Just, C.; Armbruster, M.; Barkusky, D.; Baumecker, M.; Diepolder, M.; Döring, T.F.; Heigl, L.; Honermeier, B.; Jate, M.; Merbach, I.; et al. Soil organic carbon sequestration in agricultural long-term field experiments as derived from particulate and mineral-associated organic matter. Geoderma 2023, 434, 116472. [Google Scholar] [CrossRef]
- Keesstra, S.; Rodrigo-Comino, J.; Novara, A.; Giménez-Morera, A.; Pulido, M.; Di Prima, S.; Cerdà, A. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena 2019, 174, 95–103. [Google Scholar] [CrossRef]
- Chen, X.; Deng, Q.; Lin, G.; Lin, M.; Wei, H. Changing rainfall frequency affects soil organic carbon concentrations by altering non-labile soil organic carbon concentrations in a tropical monsoon forest. Sci. Total Environ. 2018, 644, 762–769. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, Q.; Liu, Y.; Liu, S.; Yu, D.; Shi, X.; Xing, S.; Chen, H.; Fan, X. Combined effects of temperature and precipitation on soil organic carbon changes in the uplands of eastern China. Geoderma 2019, 337, 1105–1115. [Google Scholar] [CrossRef]
- Jakšić, S.; Ninkov, J.; Milić, S.; Vasin, J.; Živanov, M.; Jakšić, D.; Komlen, V. Influence of Slope Gradient and Aspect on Soil Organic Carbon Content in the Region of Niš, Serbia. Sustainability 2021, 13, 8332. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Ros, G.H.; Furtak, K.; Iqbal, H.M.N.; Parra-Saldívar, R. Soil carbon sequestration—An interplay between soil microbial community and soil organic matter dynamics. Sci. Total Environ. 2022, 815, 152928. [Google Scholar] [CrossRef]
- Buraka, T.; Elias, E.; Lelago, A. Soil organic carbon and its’ stock potential in different land-use types along slope position in Coka watershed, Southern Ethiopia. Heliyon 2022, 8, e10261. [Google Scholar] [CrossRef] [PubMed]
- Saha, R.; Chaudhary, R.S.; Somasundaram, J. Soil Health Management under Hill Agroecosystem of North East India. Appl. Environ. Soil Sci. 2012, 2012, 696174. [Google Scholar] [CrossRef]
- Kocyigit, R.; Demirci, S. Long-term changes of aggregate-associated and labile soil organic carbon and nitrogen after conversion from forest to grassland and cropland in northern Turkey. Land. Degrad. Dev. 2012, 23, 475–482. [Google Scholar] [CrossRef]
- Wang, Z.-M.; Zhang, B.; Song, K.-S.; Liu, D.-W.; Ren, C.-Y. Spatial Variability of Soil Organic Carbon Under Maize Monoculture in the Song-Nen Plain, Northeast China. Pedosphere 2010, 20, 80–89. [Google Scholar] [CrossRef]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Mäder, P.; Stolze, M.; Smith, P.; Scialabba, N.E.-H.; et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef]
- Martens, D.A.; Reedy, T.E.; Lewis, D.T. Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Glob. Change Biol. 2004, 10, 65–78. [Google Scholar] [CrossRef]
- Castellano, M.J.; Mueller, K.E.; Olk, D.C.; Sawyer, J.E.; Six, J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob. Change Biol. 2015, 21, 3200–3209. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S.; Mondal, S.; Mukherjee, S.; Mukhopadhyay, A. Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. Egypt. J. Remote Sens. Space Sci. 2017, 20, 61–70. [Google Scholar] [CrossRef]
- Banday, M.; Bhardwaj, D.R.; Pala, N.A. Influence of forest type, altitude and NDVI on soil properties in forests of North Western Himalaya, India. Acta Ecol. Sin. 2019, 39, 50–55. [Google Scholar] [CrossRef]
- Kumar, P.; Sajjad, H.; Tripathy, B.R.; Ahmed, R.; Mandal, V.P. Prediction of spatial soil organic carbon distribution using Sentinel-2A and field inventory data in Sariska Tiger Reserve. Nat. Hazards 2018, 90, 693–704. [Google Scholar] [CrossRef]
- Mirchooli, F.; Kiani-Harchegani, M.; Darvishan, A.K.; Falahatkar, S.; Sadeghi, S.H. Spatial distribution dependency of soil organic carbon content to important environmental variables. Ecol. Indic. 2020, 116, 106473. [Google Scholar] [CrossRef]
- Lai, C.; Li, C.; Peng, F.; Xue, X.; You, Q.; Zhang, W.; Ma, S. Plant community change mediated heterotrophic respiration increase explains soil organic carbon loss before moderate degradation of alpine meadow. Land Degrad. Dev. 2021, 32, 5322–5333. [Google Scholar] [CrossRef]
- Nie, X.J.; Zhao, T.Q.; Qiao, X.N. Impacts of soil erosion on organic carbon and nutrient dynamics in an alpine grassland soil. Soil Sci. Plant Nutr. 2013, 59, 660–668. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhan, T.; Li, Y.; Wang, Y.; Yu, T.; Sun, J. Soil organic carbon stock responded more sensitively to degradation in alpine meadows than in alpine steppes on the Qinghai-Tibetan Plateau. Land Degrad. Dev. 2023, 34, 353–361. [Google Scholar] [CrossRef]
- Agaba, S.; Ferré, C.; Musetti, M.; Comolli, R. Mapping Soil Organic Carbon Stock and Uncertainties in an Alpine Valley (Northern Italy) Using Machine Learning Models. Land 2024, 13, 78. [Google Scholar] [CrossRef]
- Emadi, M.; Taghizadeh-Mehrjardi, R.; Cherati, A.; Danesh, M.; Mosavi, A.; Scholten, T. Predicting and Mapping of Soil Organic Carbon Using Machine Learning Algorithms in Northern Iran. Remote Sens. 2020, 12, 2234. [Google Scholar] [CrossRef]
- John, K.; Isong, I.A.; Kebonye, N.M.; Ayito, E.O.; Agyeman, P.C.; Afu, S.M. Using Machine Learning Algorithms to Estimate Soil Organic Carbon Variability with Environmental Variables and Soil Nutrient Indicators in an Alluvial Soil. Land 2020, 9, 487. [Google Scholar] [CrossRef]
- Suleymanov, A.R.; Suleymanov, R.R.; Belan, L.N.; Asylbaev, I.G.; Tuktarova, I.O.; Shagaliev, R.D.; Bogdan, E.A.; Fairuzov, I.I.; Mirsayapov, R.R.; Davydychev, A.N. Drivers of Soil Organic Carbon Spatial Distribution in the Southern Ural Mountains: A Machine Learning Approach. Eurasian Soil Sci. 2024, 57, 1942–1949. [Google Scholar] [CrossRef]
- Abbaszad, P.; Asadzadeh, F.; Rezapour, S.; Aqdam, K.K.; Shabani, F. Evaluation of Landsat 8 and Sentinel-2 vegetation indices to predict soil organic carbon using machine learning models. Model. Earth Syst. Environ. 2024, 10, 2581–2592. [Google Scholar] [CrossRef]
- Fathizad, H.; Taghizadeh-Mehrjardi, R.; Ardakani, M.A.H.; Zeraatpisheh, M.; Heung, B.; Scholten, T. Spatiotemporal Assessment of Soil Organic Carbon Change Using Machine-Learning in Arid Regions. Agronomy 2022, 12, 628. [Google Scholar] [CrossRef]
- Nabiollahi, K.; Eskandari, S.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Triantafilis, J. Assessing soil organic carbon stocks under land-use change scenarios using random forest models. Carbon Manag. 2019, 10, 63–77. [Google Scholar] [CrossRef]
- Triantakonstantis, D.; Karakostas, A. Soil Organic Carbon Monitoring and Modelling via Machine Learning Methods Using Soil and Remote Sensing Data. Agriculture 2025, 15, 910. [Google Scholar] [CrossRef]
- Nwaogu, C.; Diagi, B.E.; Ekweogu, C.V.; Ajeyomi, A.S.; Ejiogu, C.C.; Emereibeole, E.I.; Eneche, P.S.U.; Okeke, O.J.; Edokpa, D.O.; Chike, E.; et al. Soil organic carbon stocks as driven by land use in Mato Grosso State: The Brazilian Cerrado agricultural frontier. Discov. Sustain. 2024, 5, 382. [Google Scholar] [CrossRef]
- Zayani, H.; Fouad, Y.; Michot, D.; Kassouk, Z.; Baghdadi, N.; Vaudour, E.; Lili-Chabaane, Z.; Walter, C. Using Machine-Learning Algorithms to Predict Soil Organic Carbon Content from Combined Remote Sensing Imagery and Laboratory Vis-NIR Spectral Datasets. Remote Sens. 2023, 15, 4264. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, J.; Chen, S.; Wang, N.; Xie, T.; Xiao, Y.; Chen, X.; Shi, Z.; Huang, Y.; Zhuo, Z. Fine Resolution Mapping of Soil Organic Carbon in Croplands with Feature Selection and Machine Learning in Northeast Plain China. Remote Sens. 2023, 15, 5033. [Google Scholar] [CrossRef]
- Mallik, S.; Bhowmik, T.; Mishra, U.; Paul, N. Mapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data. Geocarto Int. 2022, 37, 2198–2214. [Google Scholar] [CrossRef]
- Castelo-Cabay, M.; Piedra-Fernandez, J.A.; Ayala, R. Deep learning for land use and land cover classification from the Ecuadorian Paramo. Int. J. Digit. Earth 2022, 15, 1001–1017. [Google Scholar] [CrossRef]
- Gogoi, N.; Choudhury, M.; Hasan, M.S.U.; Changmai, B.; Baruah, D.; Samanta, P. Soil organic carbon pool in diverse land utilization patterns in North-East India: An implication for carbon sequestration. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Sajjad, H.; Kumar, P.; Srivastava, P.K.; Pathak, S.O.; Ahmed, M.; Kumar, V.; Dobriyal, M.; Kumari, P.; Pandey, P.C. Assessing soil organic carbon and its relation with biophysical and ecological parameters in tropical forest ecosystem India. Geocarto Int. 2024, 40, 2441388. [Google Scholar] [CrossRef]
Model Type | Preset |
---|---|
Tree | Fine Tree |
Linear Regression | Linear |
Linear Regression | Interactions Linear |
Linear Regression | Robust Linear |
Stepwise Linear Regression | Stepwise Linear |
Tree | Fine Tree |
Tree | Medium Tree |
Tree | Coarse Tree |
SVM | Linear SVM |
SVM | Quadratic SVM |
SVM | Cubic SVM |
SVM | Fine Gaussian SVM |
SVM | Medium Gaussian SVM |
SVM | Coarse Gaussian SVM |
Efficient Linear | Efficient Linear Least Squares |
Efficient Linear | Efficient Linear SVM |
Ensemble | Boosted Trees |
Ensemble | Bagged Trees |
Gaussian Process Regression | Squared Exponential GPR |
Gaussian Process Regression | Matern 5/2 GPR |
Gaussian Process Regression | Exponential GPR |
Gaussian Process Regression | Rational Quadratic GPR |
Neural Network | Narrow Neural Network |
Neural Network | Medium Neural Network |
Neural Network | Wide Neural Network |
Neural Network | Bilayered Neural Network |
Neural Network | Trilayered Neural Network |
Kernel | SVM Kernel |
Kernel | Least Squares Regression Kernel |
Land Use | NDVI | MSAV12 | BSI | Elevation | SOC |
---|---|---|---|---|---|
Agriculture | 0.529 ± 0.241 | 0.722 ± 0.101 | 0.016 ± 0.201 | 3507.76 ± 282.673 | 18.85 ± 3.080 |
Forest | 0.611 ± 0.249 | 0.746 ± 0.091 | −0.053 ± 0.215 | 3349.449 ± 317.002 | 25.66 ± 8.820 |
Grasslands/Moorlands | 0.615 ± 0.198 | 0.752 ± 0.084 | −0.040 ± 0.178 | 3459.552 ± 292.939 | 12.12 ± 6.500 |
Preset | RMSE | MSE | R2 | MAE | MAPE % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDVI | MSAV12 | BSI | NDVI | MSAV12 | BSI | NDVI | MSAV12 | BSI | NDVI | MSAV12 | BSI | NDVI | MSAV12 | BSI | |
Fine Tree | 4.71 | 5.29 | 4.71 | 22.17 | 27.98 | 22.17 | 0.73 | 0.67 | 0.73 | 3.57 | 3.99 | 3.57 | 22.86 | 27.68 | 22.86 |
Linear | 3.78 | 4.96 | 3.78 | 14.26 | 24.63 | 14.26 | 0.83 | 0.71 | 0.83 | 2.96 | 3.93 | 2.96 | 19.87 | 28.77 | 19.87 |
Interactions Linear | 3.74 | 5.03 | 3.74 | 14.02 | 25.30 | 14.02 | 0.83 | 0.70 | 0.83 | 2.92 | 3.97 | 2.92 | 20.55 | 29.88 | 20.55 |
Robust Linear | 3.78 | 4.98 | 3.78 | 14.26 | 24.80 | 14.26 | 0.83 | 0.71 | 0.83 | 2.96 | 3.92 | 2.96 | 19.79 | 28.12 | 19.79 |
Stepwise Linear | 3.78 | 4.97 | 3.78 | 14.27 | 24.70 | 14.27 | 0.83 | 0.71 | 0.83 | 2.96 | 3.91 | 2.96 | 20.26 | 28.57 | 20.26 |
Fine Tree | 4.71 | 5.29 | 4.71 | 22.17 | 27.98 | 22.17 | 0.73 | 0.67 | 0.73 | 3.57 | 3.99 | 3.57 | 22.86 | 27.68 | 22.86 |
Medium Tree | 4.37 | 5.05 | 4.37 | 19.07 | 25.51 | 19.07 | 0.77 | 0.70 | 0.77 | 3.37 | 3.87 | 3.37 | 21.67 | 28.71 | 21.67 |
Coarse Tree | 4.68 | 5.48 | 4.68 | 21.90 | 30.06 | 21.90 | 0.73 | 0.65 | 0.73 | 3.83 | 4.39 | 3.83 | 33.05 | 36.57 | 33.05 |
Linear SVM | 3.79 | 4.98 | 3.79 | 14.34 | 24.78 | 14.34 | 0.83 | 0.71 | 0.83 | 2.97 | 3.91 | 2.97 | 19.86 | 27.45 | 19.86 |
Quadratic SVM | 3.68 | 4.77 | 3.68 | 13.51 | 22.74 | 13.51 | 0.84 | 0.73 | 0.84 | 2.87 | 3.79 | 2.87 | 18.77 | 28.34 | 18.77 |
Cubic SVM | 3.81 | 5.31 | 3.81 | 14.50 | 28.15 | 14.50 | 0.82 | 0.67 | 0.82 | 2.98 | 3.92 | 2.98 | 21.70 | 28.15 | 21.70 |
Fine Gaussian SVM | 4.59 | 5.68 | 4.59 | 21.10 | 32.21 | 21.10 | 0.74 | 0.62 | 0.74 | 3.49 | 4.23 | 3.49 | 26.38 | 34.24 | 26.38 |
Medium Gaussian SVM | 3.74 | 4.37 | 3.74 | 13.96 | 19.13 | 13.96 | 0.83 | 0.78 | 0.83 | 2.89 | 3.30 | 2.89 | 19.36 | 23.01 | 19.36 |
Coarse Gaussian SVM | 3.76 | 4.89 | 3.76 | 14.17 | 23.91 | 14.17 | 0.83 | 0.72 | 0.83 | 2.96 | 3.86 | 2.96 | 20.30 | 28.35 | 20.30 |
Efficient Linear Least Squares | 9.05 | 9.24 | 9.05 | 81.86 | 85.47 | 81.86 | 0.00 | 0.00 | 0.00 | 7.63 | 7.87 | 7.63 | 79.87 | 78.50 | 79.87 |
Efficient Linear SVM | 9.05 | 9.24 | 9.05 | 81.92 | 85.38 | 81.92 | 0.00 | 0.00 | 0.00 | 7.63 | 7.88 | 7.63 | 81.24 | 77.63 | 81.24 |
Boosted Trees | 4.38 | 4.86 | 4.38 | 19.15 | 23.63 | 19.15 | 0.77 | 0.72 | 0.77 | 3.33 | 3.67 | 3.33 | 21.19 | 25.06 | 21.19 |
Bagged Trees | 4.17 | 4.72 | 4.17 | 17.36 | 22.27 | 17.36 | 0.79 | 0.74 | 0.79 | 3.28 | 3.58 | 3.28 | 22.04 | 26.60 | 22.04 |
Squared Exponential GPR | 3.72 | 4.39 | 3.72 | 13.88 | 19.26 | 13.88 | 0.83 | 0.77 | 0.83 | 2.89 | 3.44 | 2.89 | 19.63 | 25.18 | 19.63 |
Matern 5/2 GPR | 3.71 | 4.37 | 3.71 | 13.79 | 19.12 | 13.79 | 0.83 | 0.78 | 0.83 | 2.88 | 3.41 | 2.88 | 19.47 | 24.83 | 19.47 |
Exponential GPR | 3.80 | 4.48 | 3.80 | 14.44 | 20.07 | 14.44 | 0.82 | 0.76 | 0.82 | 2.90 | 3.43 | 2.90 | 19.69 | 25.32 | 19.69 |
Rational Quadratic GPR | 3.72 | 4.37 | 3.72 | 13.88 | 19.13 | 13.88 | 0.83 | 0.78 | 0.83 | 2.89 | 3.42 | 2.89 | 19.63 | 24.87 | 19.63 |
Narrow Neural Network | 3.75 | 4.91 | 3.75 | 14.05 | 24.11 | 14.05 | 0.83 | 0.72 | 0.83 | 2.92 | 3.86 | 2.92 | 20.18 | 27.85 | 20.18 |
Medium Neural Network | 4.20 | 5.00 | 4.20 | 17.61 | 25.01 | 17.61 | 0.79 | 0.71 | 0.79 | 3.23 | 3.70 | 3.23 | 22.06 | 27.40 | 22.06 |
Wide Neural Network | 6.96 | 7.41 | 6.96 | 48.40 | 54.87 | 48.40 | 0.41 | 0.36 | 0.41 | 4.85 | 5.58 | 4.85 | 34.00 | 41.38 | 34.00 |
Bilayered Neural Network | 4.72 | 6.03 | 4.72 | 22.30 | 36.33 | 22.30 | 0.73 | 0.57 | 0.73 | 3.37 | 4.36 | 3.37 | 23.33 | 31.30 | 23.33 |
Trilayered Neural Network | 4.31 | 5.12 | 4.31 | 18.62 | 26.18 | 18.62 | 0.77 | 0.69 | 0.77 | 3.30 | 3.72 | 3.30 | 21.34 | 25.79 | 21.34 |
SVM Kernel | 5.19 | 5.94 | 5.19 | 26.98 | 35.23 | 26.98 | 0.67 | 0.59 | 0.67 | 4.05 | 4.63 | 4.05 | 38.76 | 43.61 | 38.76 |
Least Squares Regression Kernel | 4.11 | 5.07 | 4.11 | 16.92 | 25.67 | 16.92 | 0.79 | 0.70 | 0.79 | 3.21 | 3.96 | 3.21 | 24.79 | 33.63 | 24.79 |
Range | SOC (g C kg−1) | MAE | ||
---|---|---|---|---|
NDVI | MSAV12 | BSI | ||
1 | 0.00–12.00 | 1.9 | 11.8 | 4.9 |
2 | 12.01–21.00 | 3.0 | 7.3 | 2.7 |
3 | 21.01–35.00 | 3.3 | 12.8 | 5.2 |
All | 0.00–35.00 | 2.9 | 11.1 | 4.4 |
MAE (Mean Absolute Error) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusaro, C.; Sarria-Guzmán, Y.; González-Jiménez, F.E.; Saba, M.; Coronado-Hernández, O.E.; Castrillón-Ortíz, C. Modelling the Spatial Distribution of Soil Organic Carbon Using Machine Learning and Remote Sensing in Nevado de Toluca, Mexico. Geomatics 2025, 5, 43. https://doi.org/10.3390/geomatics5030043
Fusaro C, Sarria-Guzmán Y, González-Jiménez FE, Saba M, Coronado-Hernández OE, Castrillón-Ortíz C. Modelling the Spatial Distribution of Soil Organic Carbon Using Machine Learning and Remote Sensing in Nevado de Toluca, Mexico. Geomatics. 2025; 5(3):43. https://doi.org/10.3390/geomatics5030043
Chicago/Turabian StyleFusaro, Carmine, Yohanna Sarria-Guzmán, Francisco Erik González-Jiménez, Manuel Saba, Oscar E. Coronado-Hernández, and Carlos Castrillón-Ortíz. 2025. "Modelling the Spatial Distribution of Soil Organic Carbon Using Machine Learning and Remote Sensing in Nevado de Toluca, Mexico" Geomatics 5, no. 3: 43. https://doi.org/10.3390/geomatics5030043
APA StyleFusaro, C., Sarria-Guzmán, Y., González-Jiménez, F. E., Saba, M., Coronado-Hernández, O. E., & Castrillón-Ortíz, C. (2025). Modelling the Spatial Distribution of Soil Organic Carbon Using Machine Learning and Remote Sensing in Nevado de Toluca, Mexico. Geomatics, 5(3), 43. https://doi.org/10.3390/geomatics5030043