Investigations on the Impacts of Global Mass Density Model to Geoid Models in Java, Indonesia
Abstract
1. Introduction
2. Study Area and Data Description
2.1. Study Area
2.2. Gravity Data
2.3. Digital Terrain Model
2.4. Topographic Mass Density Model
3. Method
3.1. Data Preparation
3.2. Topography Effect on Geoid Computation
3.3. Geoid Computation Using Stokes–Helmert’s Method
4. Results and Discussion
4.1. Outliers Detections
4.2. Downward Continuation and Gridding of Residual Gravity
4.3. Geoid Computation
4.4. Geoid Accuracy Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hofmann-Wellenhof, B.; Moritz, H. Physical Geodesy; Springer: Vienna, Austria, 2005. [Google Scholar]
- Hinze, W.J. Bouguer reduction density, why 2.67? Geophysics 2003, 68, 1559–1560. [Google Scholar] [CrossRef]
- Nergizci, M.; Abbak, R.A.; Arisoy, M.O. The effect of crustal density heterogeneity on determining gravimetric geoid: Example in Central Anatolia, Türkiye. J. Asian Earth Sci. 2024, 264, 106037. [Google Scholar] [CrossRef]
- Tziavos, I.; Featherstone, W. First results of using digital density data in gravimetric geoid computation in Australia. In Proceedings of the Gravity, Geoid and Geodynamics 2000: GGG2000 IAG International Symposium, Banff, AB, Canada, 31 July–4 August 2000; Springer: Berlin/Heidelberg, Germany, 2002; pp. 335–340. [Google Scholar]
- Tenzer, R.; Vaníček, P. Correction to Helmert’s orthometric height due to actual lateral variation of topographical density. Rev. Bras. Cartogr. 2003. [Google Scholar] [CrossRef]
- Martinec, Z. Effect of lateral density variations of topographical masses in view of improving geoid model accuracy over Canada. In Contract Report for Geodetic Survey of Canada; University of New Brunswick: Fredericton, NB, Canada.
- Huang, J.; Vaníček, P.; Pagiatakis, S.; Brink, W. Effect of topographical density on geoid in the Canadian Rocky Mountains. J. Geod. 2001, 74, 805–815. [Google Scholar] [CrossRef]
- Sjöberg, L.E. The effect on the geoid of lateral topographic density variations. J. Geod. 2004, 78, 34–39. [Google Scholar] [CrossRef]
- Kiamehr, R. The impact of lateral density variation model in the determination of precise gravimetric geoid in mountainous areas: A case study of Iran. Geophys. J. Int. 2006, 167, 521–527. [Google Scholar] [CrossRef]
- Abbak, R.A. Effect of a high-resolution global crustal model on gravimetric geoid determination: A case study in a mountainous region. Stud. Geophys. Geod. 2020, 64, 436–451. [Google Scholar] [CrossRef]
- Lin, M.; Li, X. Impacts of using the rigorous topographic gravity modeling method and lateral density variation model on topographic reductions and geoid modeling: A case study in Colorado, USA. Surv. Geophys. 2022, 43, 1497–1538. [Google Scholar] [CrossRef]
- Lin, M.; Denker, H.; Müller, J. Gravity field modeling using tesseroids with variable density in the vertical direction. Surv. Geophys. 2020, 41, 723–765. [Google Scholar] [CrossRef]
- Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. Update on CRUST1. 0—A 1-degree global model of Earth’s crust. Geophys. Res. Abstr. 2013, 15, 2658. [Google Scholar]
- Sheng, M.; Shaw, C.; Vaníček, P.; Kingdon, R.; Santos, M.; Foroughi, I. Formulation and validation of a global laterally varying topographical density model. Tectonophysics 2019, 762, 45–60. [Google Scholar] [CrossRef]
- Tiede, C.; Camacho, A.G.; Gerstenecker, C.; Fernández, J.; Suyanto, I. Modeling the density at Merapi volcano area, Indonesia, via the inverse gravimetric problem. Geochem. Geophys. Geosystems 2005, 6, Q09011. [Google Scholar] [CrossRef]
- Hofmann-Wellenhof, B.; Moritz, H. The Java Convergent Margin: Structure, Seismogenesis and Subduction Processes; Geological Society of London: Vienna, Austria, 2011. [Google Scholar] [CrossRef]
- Pahlevi, A.; Pangastuti, D. Indonesian geospatial reference system 2013 and its implementation on positioning. In Proceedings of the FIG Congress, Kuala Lumpur, Malaysia, 16–21 June 2014; Volume 1, p. 12. [Google Scholar]
- Bramanto, B.; Prijatna, K.; Pahlevi, A.M.; Sarsito, D.A.; Dahrin, D.; Erfan, D.V.; Munthaha, R.I.S. Determination of gravity anomalies in Java, Indonesia, from airborne gravity survey. Tao Terr. Atmos. Ocean. Sci. 2021, 32, 7. [Google Scholar] [CrossRef]
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Haas, C.; et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 2013, 40, 732–737. [Google Scholar] [CrossRef]
- Andersen, O.; Knudsen, P. The DTU17 Global Marine Gravity Field: First Validation Results. In Fiducial Reference Measurements for Altimetry, Proceedings of the International Review Workshop on Satellite Altimetry Cal/Val Activities and Applications, Chania, Greece, 23–26 April 2018; Mertikas, S., Pail, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Denker, H. "Evaluation of SRTM3 and GTOPO30 Terrain Data in Germany". In Proceedings of the Gravity, Geoid and Space Missions, Porto, Portugal, 30 August–3 September 2004; Jekeli, C., Bastos, L., Fernandes, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 218–223. [Google Scholar]
- Becker, J.J.; Sandwell., D.T.; Smith, W.H.F.; Braud, J.; Binder, B.; Depner, J.L.; Fabre, D.; Factor, J.; Ingalls, S.; Kim, S.H.; et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geod. 2009, 32, 355–371. [Google Scholar]
- Olson, C.J.; Becker, J.J.S.D. SRTM15_PLUS: Data fusion of Shuttle Radar Topography Mission (SRTM) land topography with measured and estimated seafloor topography. In NCEI Accession 0150537; National Centers for Environmental Information (NCEI): Asheville, NC, USA, 2016. [Google Scholar]
- Tozer, B.; Sandwell, D.T.; Smith, W.H.F.; Olson, C.; Beale, J.R.; Wessel, P. Global bathymetry and topography at 15 arc seconds: SRTM15+. Earth Space Sci. 2019, 6, 1847–1864. [Google Scholar] [CrossRef]
- Tenzer, R.; Chen, W.; Baranov, A.; Bagherbandi, M. Gravity Maps of Antarctic Lithospheric Structure from Remote-Sensing and Seismic Data. Pure Appl. Geophys. 2018, 175, 2181–2203. [Google Scholar] [CrossRef]
- Featherstone, W.; Dentith, M. A geodetic approach to gravity data reduction for geophysics. Comput. Geosci. 1997, 23, 1063–1070. [Google Scholar] [CrossRef]
- Osborne, J.; Overbay, A. The power of outliers (and why researchers should always check for them) Practical Assessment, Research, and Evaluation; University of Massachusetts Amherst Libraries: Amherst, MA, USA, 2004. [Google Scholar]
- Varga, M.; Pitoňák, M.; Novák, P.; Bašić, T. Contribution of GRAV-D airborne gravity to improvement of regional gravimetric geoid modelling in Colorado, USA. J. Geod. 2021, 95, 53. [Google Scholar]
- Christopher, J.; Yang, H.J.; Jay, K. Geoid Determination in South Korea from a Combination of Terrestrial and Airborne Gravity Anomaly Data. J. Geod. 2013. [Google Scholar] [CrossRef]
- Inerbayeva, A. Determination of a Gravimetric Geoid Model of Kazakhstan Using the KTH-Method. Ph.D. Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, 2010. [Google Scholar]
- Sansò, F.; Sideris, M.G. Geoid Determination: Theory and Methods; Springer Science: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Forsberg, R. Terrain effects in geoid model computations.-lectures notes. In ternational school for the determination and use of the geoid model. In International Geoid model Service; DIIAR: Milan, Italy, 1994. [Google Scholar]
- Lestari, R.; Bramanto, B.; Prijatna, K.; Pahlevi, A.M.; Putra, W.; Muntaha, R.I.S.; Ladivanov, F. Local geoid modeling in the central part of Java Indonesia using terrestrial-based gravity observations. Geod. Geodyn. 2023, 14, 231–243. [Google Scholar] [CrossRef]
- Sjöberg, L.E. Topographic effects by the Stokes-Helmert method of geoid and quasi-geoid determinations. J. Geod. 2000, 74, 255–268. [Google Scholar] [CrossRef]
- Hwang, C.; Hsu, H.J.; Featherstone, W.; Cheng, C.C.; Yang, M.; Huang, W.; Wang, C.Y.; Huang, J.F.; Chen, K.H.; Huang, C.H.; et al. New gravimetric-only and hybrid geoid models of Taiwan for height modernisation, cross-island datum connection and airborne LiDAR mapping. J. Geod. 2020, 94, 1–22. [Google Scholar] [CrossRef]
- Moritz, H. Precise Gravimetric Geodesy; Ohio State University: Columbus, OH, USA, 1974. [Google Scholar]
- Hirvonen, R. Statistical Analysis of Gravity Anomalies; Ohio State University Research Foundation Colombus: Columbus, OH, USA, 1962. [Google Scholar]
- Liu, Y.; Lou, L. Unified land-ocean quasi-geoid computation from heterogeneous data sets based on radial basis functions. Remote Sens. 2013, 14, 2022. [Google Scholar] [CrossRef]
- Borghi, A.; Barzaghi, R.; Al-Bayari, O.; Al Madani, S. Centimeter precision geoid model for Jeddah region (Saudi Arabia). Remote Sens. 2020, 12, 2066. [Google Scholar] [CrossRef]
- Forsberg, R. GRAVSOFT. In GRAVSOFT Technical Manual; Technical University of Denmark: Kongens Lyngby, Denmark, 2008. [Google Scholar]
- Vanicek, P.; Kleusberg, A. The Canadian geoid—Stokesian approach. Manuscripta Geodaetica; Springer: Berlin/Heidelberg, Germany, 1987; Volume 12, pp. 86–98. [Google Scholar] [CrossRef]
- Wong, L.; Gore, R. Evaluation of Modifications to Stokes’ Formula. J. Geophys. Res. 1969. [Google Scholar]
- Abbak, R.A.; Goyal, R.; Ustun, A.; Olgun, S. Combined effects of terrain corrections and deterministic modifiers on the Stokes-Helmert geoid over sophisticated topography. Acta Geod. Geophys. 2025, 60, 29–51. [Google Scholar]
- Li, X.; Wang, Y. Comparisons of geoid models over Alaska computed with different Stokes’ kernel modifications. J. Geod. Sci. 2011, 1, 136–142. [Google Scholar] [CrossRef]
- Heiskanen, W.; Moritz, H. Physical Geodesy; W. H. Freeman & Co.: New York, NY, USA, 1967. [Google Scholar]
- Ben-Zion, Y.; Sammis, C.G. Characterization of Fault Zones. Pure Appl. Geophys. 2003, 160, 677–715. [Google Scholar] [CrossRef]
- Forsberg, R.; Fehr, J. Airborne gravity and geoid determination. In Proceedings of the 2nd International Airborne Gravity Conference. International Association of Geodesy, Budapest, Hungary, 10–14 March 1998; pp. 51–60. [Google Scholar]
- Hwang, C.W.; Hsiao, Y.S. Orthometric corrections from leveling, gravity, density and elevation data: A case study in Taiwan. J. Geod. 2003, 77, 279–291. [Google Scholar] [CrossRef]
Min | Max | Mean | |
---|---|---|---|
−23.5102 | 222.3733 | 55.1587 | |
−142.661 | 242.014 | 70.5778 | |
−173.5375 | 309.7500 | 10.8552 | |
−173.5375 | 309.7500 | 14.3703 |
Geoid Models | Min | Max | Mean | Std |
---|---|---|---|---|
−11.8344 | 45.7334 | 18.0876 | 15.3997 | |
−11.6876 | 45.7006 | 18.0919 | 15.3723 | |
−11.6531 | 45.4573 | 18.6531 | 15.2534 | |
−0.1251 | 0.2934 | −0.003 | 0.0136 |
Geoid Model | M | Min (m) | Max (m) | Mean (m) | Std (m) | |
---|---|---|---|---|---|---|
0.94 | 1989 | −0.5290 | 0.1863 | 0.0000 | 0.1074 | |
0.94 | 1980 | −0.5250 | 0.1862 | 0.0000 | 0.1067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guvil, Q.; Wijaya, D.D.; Bramanto, B.; Prijatna, K.; Meilano, I.; Hwang, C.; Lestari, R.; Pahlevi, A.M.; Triarahmadhana, B.; Muntaha, R.I.S.; et al. Investigations on the Impacts of Global Mass Density Model to Geoid Models in Java, Indonesia. Geomatics 2025, 5, 45. https://doi.org/10.3390/geomatics5030045
Guvil Q, Wijaya DD, Bramanto B, Prijatna K, Meilano I, Hwang C, Lestari R, Pahlevi AM, Triarahmadhana B, Muntaha RIS, et al. Investigations on the Impacts of Global Mass Density Model to Geoid Models in Java, Indonesia. Geomatics. 2025; 5(3):45. https://doi.org/10.3390/geomatics5030045
Chicago/Turabian StyleGuvil, Quinoza, Dudy Darmawan Wijaya, Brian Bramanto, Kosasih Prijatna, Irwan Meilano, Cheinway Hwang, Rahayu Lestari, Arisauna Maulidyan Pahlevi, Bagas Triarahmadhana, Raa Ina Sidrotul Muntaha, and et al. 2025. "Investigations on the Impacts of Global Mass Density Model to Geoid Models in Java, Indonesia" Geomatics 5, no. 3: 45. https://doi.org/10.3390/geomatics5030045
APA StyleGuvil, Q., Wijaya, D. D., Bramanto, B., Prijatna, K., Meilano, I., Hwang, C., Lestari, R., Pahlevi, A. M., Triarahmadhana, B., Muntaha, R. I. S., Syafarianty, A. N., & Irfan, M. (2025). Investigations on the Impacts of Global Mass Density Model to Geoid Models in Java, Indonesia. Geomatics, 5(3), 45. https://doi.org/10.3390/geomatics5030045