Improving Individual Tree Crown Detection and Species Classification in a Complex Mixed Conifer–Broadleaf Forest Using Two Machine Learning Models with Different Combinations of Metrics Derived from UAV Imagery
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Collection of Field Data
2.3. Collection of UAV Imagery
2.4. Data Analysis
2.4.1. Processing UAV Images
2.4.2. Extraction of Metrics
2.4.3. Detection of Individual Tree Crowns
Manual Individual Tree Crown Detection
Multiresolution Individual Tree Crown Detection
DeepForest Individual Tree Crown Detection
2.4.4. Classification of Tree Species
Manual Tree Crown Detection for Tree Species Classification
Multiresolution Tree Species Classification
DeepForest Tree Species Classification
2.4.5. Accuracy Assessment
Tree Crown Detection Accuracy
Tree Species Classification Accuracy
3. Results
3.1. The Individual Tree Crown Detection
3.1.1. Multiresolution Individual Tree Crown Detection
3.1.2. DeepForest Individual Tree Crown Detection
3.1.3. Visualization of MRS and DF Individual Tree Crown Detection
3.2. Tree Species Classification
3.2.1. MRS-RF Tree Species Classification
3.2.2. DF-CNN Tree Species Classification
3.2.3. Visual Display of MRS-RF and DF-CNN Tree Species Classification
3.2.4. Mapping of MRS-RF and DF-CNN Tree Species in the Study Area
4. Discussion
4.1. Individual Tree Crown Detection
4.2. Individual Tree Species Classification
4.3. Management Aspect
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, X.; Lei, X.; He, X.; Lan, J.; Guo, H.; Xu, Q. Ecosystem Service Multifunctionality of Mixed Conifer-Broad-Leaved Forests under Climate Change and Forest Management Based on Matrix Growth Modelling. For. Ecosyst. 2024, 11, 100231. [Google Scholar] [CrossRef]
- Grotti, M.; Chianucci, F.; Puletti, N.; Fardusi, M.J.; Castaldi, C.; Corona, P. Spatio-Temporal Variability in Structure and Diversity in a Semi-Natural Mixed Oak-Hornbeam Floodplain Forest. Ecol. Indic. 2019, 104, 576–587. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, X.; Cao, L.; Coops, N.C.; Goodbody, T.R.H.; Zhong, T.; Zhao, W.; Sun, Q.; Ba, S.; Zhang, Z.; et al. Tree Species Classification Using UAS-Based Digital Aerial Photogrammetry Point Clouds and Multispectral Imageries in Subtropical Natural Forests. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102173. [Google Scholar] [CrossRef]
- Karthigesu, J.; Owari, T.; Tsuyuki, S.; Hiroshima, T. Improving the Individual Tree Parameters Estimation of a Complex Mixed Conifer—Broadleaf Forest Using a Combination of Structural, Textural, and Spectral Metrics Derived from Unmanned Aerial Vehicle RGB and Multispectral Imagery. Geomatics 2025, 5, 12. [Google Scholar] [CrossRef]
- Beloiu, M.; Heinzmann, L.; Rehush, N.; Gessler, A.; Griess, V.C. Individual Tree-Crown Detection and Species Identification in Heterogeneous Forests Using Aerial RGB Imagery and Deep Learning. Remote Sens. 2023, 15, 1463. [Google Scholar] [CrossRef]
- Bai, Y.; Walsworth, N.; Roddan, B.; Hill, D.A.; Broersma, K.; Thompson, D. Quantifying Tree Cover in the Forest–Grassland Ecotone of British Columbia Using Crown Delineation and Pattern Detection. For. Ecol. Manag. 2005, 212, 92–100. [Google Scholar] [CrossRef]
- Dalponte, M.; Frizzera, L.; Ørka, H.O.; Gobakken, T.; Næsset, E.; Gianelle, D. Predicting Stem Diameters and Aboveground Biomass of Individual Trees Using Remote Sensing Data. Ecol. Indic. 2018, 85, 367–376. [Google Scholar] [CrossRef]
- Gini, R.; Sona, G.; Ronchetti, G.; Passoni, D.; Pinto, L. Improving Tree Species Classification Using UAS Multispectral Images and Texture Measures. ISPRS Int. J. Geoinf. 2018, 7, 315. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef]
- Allen, M.J.; Grieve, S.W.D.; Owen, H.J.F.; Lines, E.R. Tree Species Classification from Complex Laser Scanning Data in Mediterranean Forests Using Deep Learning. Methods Ecol. Evol. 2023, 14, 1657–1667. [Google Scholar] [CrossRef]
- Terryn, L.; Calders, K.; Disney, M.; Origo, N.; Malhi, Y.; Newnham, G.; Raumonen, P.; Kerblom, M.Å.; Verbeeck, H. Tree Species Classification Using Structural Features Derived from Terrestrial Laser Scanning. ISPRS J. Photogramm. Remote Sens. 2020, 168, 170–181. [Google Scholar] [CrossRef]
- Chen, Q.; Luo, H.; Cheng, Y.; Xie, M.; Nan, D. An Individual Tree Detection and Segmentation Method from TLS and MLS Point Clouds Based on Improved Seed Points. Forests 2024, 15, 1083. [Google Scholar] [CrossRef]
- Ballanti, L.; Blesius, L.; Hines, E.; Kruse, B. Tree Species Classification Using Hyperspectral Imagery: A Comparison of Two Classifiers. Remote Sens. 2016, 8, 445. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of Studies on Tree Species Classification from Remotely Sensed Data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Dainelli, R.; Toscano, P.; Di Gennaro, S.F.; Matese, A. Recent Advances in Unmanned Aerial Vehicles Forest Remote Sensing—A Systematic Review. Part II: Research Applications. Forests 2021, 12, 397. [Google Scholar] [CrossRef]
- Tong, F.; Zhang, Y. Individual Tree Crown Delineation in High Resolution Aerial RGB Imagery Using StarDist-Based Model. Remote Sens. Environ. 2025, 319, 114618. [Google Scholar] [CrossRef]
- Onishi, M.; Ise, T. Explainable Identification and Mapping of Trees Using UAV RGB Image and Deep Learning. Sci. Rep. 2021, 11, 903. [Google Scholar] [CrossRef]
- Sivanandam, P.; Lucieer, A. Tree Detection and Species Classification in a Mixed Species Forest Using Unoccupied Aircraft System (UAS) RGB and Multispectral Imagery. Remote Sens. 2022, 14, 4963. [Google Scholar] [CrossRef]
- Ferreira, M.P.; Wagner, F.H.; Aragão, L.E.O.C.; Shimabukuro, Y.E.; de Souza Filho, C.R. Tree Species Classification in Tropical Forests Using Visible to Shortwave Infrared WorldView-3 Images and Texture Analysis. ISPRS J. Photogramm. Remote Sens. 2019, 149, 119–131. [Google Scholar] [CrossRef]
- Komárek, J.; Klápště, P.; Hrach, K.; Klouček, T. The Potential of Widespread UAV Cameras in the Identification of Conifers and the Delineation of Their Crowns. Forests 2022, 13, 710. [Google Scholar] [CrossRef]
- Miraki, M.; Sohrabi, H.; Fatehi, P.; Kneubuehler, M. Individual Tree Crown Delineation from High-Resolution UAV Images in Broadleaf Forest. Ecol. Inf. 2021, 61, 101207. [Google Scholar] [CrossRef]
- Ke, Y.; Quackenbush, L.J. A Review of Methods for Automatic Individual Tree-Crown Detection and Delineation from Passive Remote Sensing. Int. J. Remote Sens. 2011, 32, 4725–4747. [Google Scholar] [CrossRef]
- Franklin, S.E.; Ahmed, O.S. Deciduous Tree Species Classification Using Object-Based Analysis and Machine Learning with Unmanned Aerial Vehicle Multispectral Data. Int. J. Remote Sens. 2018, 39, 5236–5245. [Google Scholar] [CrossRef]
- Chen, C.; Jing, L.; Li, H.; Tang, Y.; Chen, F. Individual Tree Species Identification Based on a Combination of Deep Learning and Traditional Features. Remote Sens. 2023, 15, 2301. [Google Scholar] [CrossRef]
- Marrs, J.; Ni-Meister, W. Machine Learning Techniques for Tree Species Classification Using Co-Registered LiDAR and Hyperspectral Data. Remote Sens. 2019, 11, 819. [Google Scholar] [CrossRef]
- Zhang, C.; Xia, K.; Feng, H.; Yang, Y.; Du, X. Tree Species Classification Using Deep Learning and RGB Optical Images Obtained by an Unmanned Aerial Vehicle. J. For. Res. 2021, 32, 1879–1888. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, Z.; Liu, H.; Wu, J.; Lin, W. Individual Tree Species Identification for Complex Coniferous and Broad-Leaved Mixed Forests Based on Deep Learning Combined with UAV LiDAR Data and RGB Images. Forests 2024, 15, 293. [Google Scholar] [CrossRef]
- Fraser, B.T.; Congalton, R.G.; Ducey, M.J. Quantifying the Accuracy of UAS-Lidar Individual Tree Detection Methods Across Height and Diameter at Breast Height Sizes in Complex Temperate Forests. Remote Sens. 2025, 17, 1010. [Google Scholar] [CrossRef]
- Yang, Q.; Su, Y.; Jin, S.; Kelly, M.; Hu, T.; Ma, Q.; Li, Y.; Song, S.; Zhang, J.; Xu, G.; et al. The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data. Remote Sens. 2019, 11, 2880. [Google Scholar] [CrossRef]
- Shen, X.; Cao, L. Tree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and LiDAR Data. Remote Sens. 2017, 9, 1180. [Google Scholar] [CrossRef]
- Weinstein, B.G.; Marconi, S.; Aubry-Kientz, M.; Vincent, G.; Senyondo, H.; White, E.P. DeepForest: A Python Package for RGB Deep Learning Tree Crown Delineation. Methods Ecol. Evol. 2020, 11, 1743–1751. [Google Scholar] [CrossRef]
- Li, Y.; Chai, G.; Wang, Y.; Lei, L.; Zhang, X. ACE R-CNN: An Attention Complementary and Edge Detection-Based Instance Segmentation Algorithm for Individual Tree Species Identification Using UAV RGB Images and LiDAR Data. Remote Sens. 2022, 14, 3035. [Google Scholar] [CrossRef]
- Gan, Y.; Wang, Q.; Iio, A. Tree Crown Detection and Delineation in a Temperate Deciduous Forest from UAV RGB Imagery Using Deep Learning Approaches: Effects of Spatial Resolution and Species Characteristics. Remote Sens. 2023, 15, 778. [Google Scholar] [CrossRef]
- Ball, J.G.C.; Hickman, S.H.M.; Jackson, T.D.; Koay, X.J.; Hirst, J.; Jay, W.; Archer, M.; Aubry-Kientz, M.; Vincent, G.; Coomes, D.A. Accurate Delineation of Individual Tree Crowns in Tropical Forests from Aerial RGB Imagery Using Mask R-CNN. Remote Sens. Ecol. Conserv. 2023, 9, 641–655. [Google Scholar] [CrossRef]
- Nigam, S.; Jain, R.; Singh, V.K.; Marwaha, S.; Arora, A.; Jain, S. EfficientNet Architecture and Attention Mechanism-Based Wheat Disease Identification Model. Procedia Comput. Sci. 2024, 235, 383–393. [Google Scholar] [CrossRef]
- Krishna Adithya, V.; Williams, B.M.; Czanner, S.; Kavitha, S.; Friedman, D.S.; Willoughby, C.E.; Venkatesh, R.; Czanner, G. EffUnet-SpaGen: An Efficient and Spatial Generative Approach to Glaucoma Detection. J. Imaging 2021, 7, 92. [Google Scholar] [CrossRef]
- Teo, K.K.; Noor, N.F.B.M.; Palaiahnakote, S.; Ayub, M.N. Bin An Efficientnet-Based Model for Classification of Oil Palm, Coconut and Banana Trees in Drone Images. Smart Agric. Technol. 2025, 10, 100748. [Google Scholar] [CrossRef]
- Onishi, M.; Watanabe, S.; Nakashima, T.; Ise, T. Practicality and Robustness of Tree Species Identification Using UAV RGB Image and Deep Learning in Temperate Forest in Japan. Remote Sens. 2022, 14, 1710. [Google Scholar] [CrossRef]
- Avtar, R.; Chen, X.; Fu, J.; Alsulamy, S.; Supe, H.; Pulpadan, Y.A.; Louw, A.S.; Tatsuro, N. Tree Species Classification by Multi-Season Collected UAV Imagery in a Mixed Cool-Temperate Mountain Forest. Remote Sens. 2024, 16, 4060. [Google Scholar] [CrossRef]
- Qin, H.; Zhou, W.; Yao, Y.; Wang, W. Individual Tree Segmentation and Tree Species Classification in Subtropical Broadleaf Forests Using UAV-Based LiDAR, Hyperspectral, and Ultrahigh-Resolution RGB Data. Remote Sens. Environ. 2022, 280, 113143. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Zhou, C.; Yin, L.; Feng, X. Urban Forest Monitoring Based on Multiple Features at the Single Tree Scale by UAV. Urban For. Urban Green. 2021, 58, 126958. [Google Scholar] [CrossRef]
- Dian, Y.; Li, Z.; Pang, Y. Spectral and Texture Features Combined for Forest Tree Species Classification with Airborne Hyperspectral Imagery. J. Indian Soc. Remote Sens. 2015, 43, 101–107. [Google Scholar] [CrossRef]
- Abdollahnejad, A.; Panagiotidis, D. Tree Species Classification and Health Status Assessment for a Mixed Broadleaf-Conifer Forest with UAS Multispectral Imaging. Remote Sens. 2020, 12, 3722. [Google Scholar] [CrossRef]
- Jiang, M.; Kong, J.; Zhang, Z.; Hu, J.; Qin, Y.; Shang, K.; Zhao, M.; Zhang, J. Seeing Trees from Drones: The Role of Leaf Phenology Transition in Mapping Species Distribution in Species-Rich Montane Forests. Forests 2023, 14, 908. [Google Scholar] [CrossRef]
- Moe, K.T.; Owari, T. Sustainability of High-Value Timber Species in Mixed Conifer–Broadleaf Forest Managed under Selection System in Northern Japan. Forests 2020, 11, 484. [Google Scholar] [CrossRef]
- Htun, N.M.; Owari, T.; Tsuyuki, S.; Hiroshima, T. Mapping the Distribution of High-Value Broadleaf Tree Crowns through Unmanned Aerial Vehicle Image Analysis Using Deep Learning. Algorithms 2024, 17, 84. [Google Scholar] [CrossRef]
- Moe, K.T.; Owari, T.; Furuya, N.; Hiroshima, T.; Morimoto, J. Application of UAV Photogrammetry with LiDAR Data to Facilitate the Estimation of Tree Locations and DBH Values for High-Value Timber Species in Northern Japanese Mixed-Wood Forests. Remote Sens. 2020, 12, 2865. [Google Scholar] [CrossRef]
- Liang, X.; Chen, J.; Gong, W.; Puttonen, E.; Wang, Y. Influence of Data and Methods on High-Resolution Imagery-Based Tree Species Recognition Considering Phenology: The Case of Temperate Forests. Remote Sens. Environ. 2025, 323, 114654. [Google Scholar] [CrossRef]
- Karthigesu, J.; Owari, T.; Tsuyuki, S.; Hiroshima, T. Improving the Estimation of Structural Parameters of a Mixed Conifer–Broadleaf Forest Using Structural, Textural, and Spectral Metrics Derived from Unmanned Aerial Vehicle Red Green Blue (RGB) Imagery. Remote Sens. 2024, 16, 1783. [Google Scholar] [CrossRef]
- Li, J.; Hu, B.; Noland, T.L. Classification of Tree Species Based on Structural Features Derived from High Density LiDAR Data. Agric. For. Meteorol. 2013, 171–172, 104–114. [Google Scholar] [CrossRef]
- Apostol, B.; Petrila, M.; Lorenţ, A.; Ciceu, A.; Gancz, V.; Badea, O. Species Discrimination and Individual Tree Detection for Predicting Main Dendrometric Characteristics in Mixed Temperate Forests by Use of Airborne Laser Scanning and Ultra-High-Resolution Imagery. Sci. Total Environ. 2020, 698, 134074. [Google Scholar] [CrossRef] [PubMed]
- Haralick, R.M. Statistical and Structural Approaches to Texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Gallardo-Salazar, J.L.; Pompa-García, M. Detecting Individual Tree Attributes and Multispectral Indices Using Unmanned Aerial Vehicles: Applications in a Pine Clonal Orchard. Remote Sens. 2020, 12, 4144. [Google Scholar] [CrossRef]
- Deepak, M.; Keski-Saari, S.; Fauch, L.; Granlund, L.; Oksanen, E.; Keinänen, M. Leaf Canopy Layers Affect Spectral Reflectance in Silver Birch. Remote Sens. 2019, 11, 2884. [Google Scholar] [CrossRef]
- Sapes, G.; Lapadat, C.; Schweiger, A.K.; Juzwik, J.; Montgomery, R.; Gholizadeh, H.; Townsend, P.A.; Gamon, J.A.; Cavender-Bares, J. Canopy Spectral Reflectance Detects Oak Wilt at the Landscape Scale Using Phylogenetic Discrimination. Remote Sens. Environ. 2022, 273, 112961. [Google Scholar] [CrossRef]
- Hastings, J.H.; Ollinger, S.V.; Ouimette, A.P.; Sanders-DeMott, R.; Palace, M.W.; Ducey, M.J.; Sullivan, F.B.; Basler, D.; Orwig, D.A. Tree Species Traits Determine the Success of LiDAR-Based Crown Mapping in a Mixed Temperate Forest. Remote Sens. 2020, 12, 309. [Google Scholar] [CrossRef]
- Blaschke, T. Object Based Image Analysis for Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-Resolution, Object-Oriented Fuzzy Analysis of Remote Sensing Data for GIS-Ready Information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Miyoshi, G.T.; Imai, N.N.; Garcia Tommaselli, A.M.; Antunes de Moraes, M.V.; Honkavaara, E. Evaluation of Hyperspectral Multitemporal Information to Improve Tree Species Identification in the Highly Diverse Atlantic Forest. Remote Sens. 2020, 12, 244. [Google Scholar] [CrossRef]
- Yin, D.; Wang, L. How to Assess the Accuracy of the Individual Tree-Based Forest Inventory Derived from Remotely Sensed Data: A Review. Int. J. Remote Sens. 2016, 37, 4521–4553. [Google Scholar] [CrossRef]
- Cohen, J.A. A Coeffient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Nuijten, R.J.G.; Coops, N.C.; Goodbody, T.R.H.; Pelletier, G. Examining the Multi-Seasonal Consistency of Individual Tree Segmentation on Deciduous Stands Using Digital Aerial Photogrammetry (DAP) and Unmanned Aerial Systems (UAS). Remote Sens. 2019, 11, 739. [Google Scholar] [CrossRef]
- Lassalle, G.; Ferreira, M.P.; La Rosa, L.E.C.; de Souza Filho, C.R. Deep Learning-Based Individual Tree Crown Delineation in Mangrove Forests Using Very-High-Resolution Satellite Imagery. ISPRS J. Photogramm. Remote Sens. 2022, 189, 220–235. [Google Scholar] [CrossRef]
- Freudenberg, M.; Magdon, P.; Nölke, N. Individual Tree Crown Delineation in High-Resolution Remote Sensing Images Based on U-Net. Neural Comput. Appl. 2022, 34, 22197–22207. [Google Scholar] [CrossRef]
- Braga, J.R.; Peripato, V.; Dalagnol, R.; Ferreira, M.; Tarabalka, Y.; Aragão, L.E.; de Campos Velho, H.; Shiguemori, E.H.; Wagner, F.H. Tree Crown Delineation Algorithm Based on a Convolutional Neural Network. Remote Sens. 2020, 12, 1288. [Google Scholar] [CrossRef]
- Yoshii, T.; Lin, C.; Tatsuhara, S.; Suzuki, S.; Hiroshima, T. Tree Species Mapping of a Hemiboreal Mixed Forest Using Mask R-CNN. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17 July 2022; pp. 6228–6231. [Google Scholar]
- Rai, M.; Rai, A.; Yokosaka, T.; Mori, T.; Nakabayashi, R.; Nakamura, M.; Suzuki, H.; Saito, K.; Yamazaki, M. Multi-Omics Analysis Decodes Biosynthesis of Specialized Metabolites Constituting the Therapeutic Terrains of Magnolia obovata. Int. J. Mol. Sci. 2025, 26, 1068. [Google Scholar] [CrossRef]
Dominant Forest Type | Plot No. | Reference Conifer Tree Crowns (Per Plot) | Reference Broadleaf Tree Crowns (Per Plot) | Total Reference Tree Crowns (Per Plot) | Tree Crown Density (Crowns ha−1) | Plot Category Based on Tree Crown Density |
---|---|---|---|---|---|---|
CDM | 1 | 75 | 12 | 87 | 348 | High density (HD) |
2 | 60 | 22 | 82 | 328 | Medium density (MD) | |
3 | 55 | 14 | 69 | 276 | Low density (LD) | |
BDM | 4 | 10 | 63 | 73 | 292 | High density (HD) |
5 | 16 | 50 | 66 | 264 | Medium density (MD) | |
6 | 23 | 35 | 57 | 228 | Low density (LD) |
Combination Model | Layers * | Remarks |
---|---|---|
1 | RGB | Spectral metrics as conventional method |
2 | RGB_CHM | Spectral and structural metrics as conventional method |
3 | RGB_CHM_MS | Added MS bands to model 2 |
4 | RGB_CHM_MS_NDVI_GNDVI_NDRE_LCI_ASM_MOC_ENT | Added spectral metrics and textural metrics to model 3 |
5 | RGB_CHM_MS_NDVI_GNDVI_NDRE_LCI_ASM_MOC_ENT_Sobel | Added Sobel as an edge detection algorithm to model 4 |
Tree Species | Scientific Name | Field-Measured Tree Crowns | Annotated Tree Crowns | Total Reference Tree Crowns |
---|---|---|---|---|
Todo fir | Abies sachalinensis (F.Schmidt) Mast. | 49 | 103 | 152 |
Spruce spp. | Picea jezoensis (Siebold et Zucc.) Carr. var. jezoensis Picea glehnii (F.Schmidt) Mast. | 60 | 25 | 85 |
Japanese oak | Quercus crispula Blume var. crispula | 67 | 90 | 157 |
Monarch birch | Betula maximowicziana Regel. | 13 | 26 | 39 |
Manchurian ash | Fraxinus mandshurica Rupr. | 08 | 23 | 31 |
Japanese linden | Tilia japonica (Miq.) Simonk. var. japonica | 26 | 62 | 88 |
Castor aralia | Kalopanax septemlobus (Thunb.) Koidz. subsp. septemlobus | 16 | 14 | 30 |
Maple spp. | Acer pictum Thunb. subsp. mono (Maxim.) H.Ohashi Acer pictum Thunb. subsp. mayrii (Schwer.) H.Ohashi | 06 | 52 | 58 |
Magnolia spp. | Magnolia obovata Thunb. Magnolia kobus DC. var. borealis Sarg. | 03 | 57 | 60 |
Total | 248 | 492 | 700 |
Plot Category | Combination Model | CDM | BDM | ||||
---|---|---|---|---|---|---|---|
Precision | Recall | F-Score | Precision | Recall | F-Score | ||
HD | 1 | 0.44 | 0.59 | 0.51 | 0.48 | 0.60 | 0.54 |
2 | 0.47 | 0.59 | 0.52 | 0.44 | 0.64 | 0.53 | |
3 | 0.45 | 0.52 | 0.48 | 0.46 | 0.70 | 0.58 | |
4 | 0.51 | 0.48 | 0.49 | 0.47 | 0.60 | 0.53 | |
5 | 0.52 | 0.55 | 0.54 | 0.56 | 0.60 | 0.58 | |
MD | 1 | 0.34 | 0.52 | 0.41 | 0.34 | 0.65 | 0.45 |
2 | 0.35 | 0.52 | 0.42 | 0.39 | 0.67 | 0.49 | |
3 | 0.41 | 0.65 | 0.51 | 0.39 | 0.65 | 0.49 | |
4 | 0.41 | 0.55 | 0.47 | 0.43 | 0.53 | 0.47 | |
5 | 0.44 | 0.55 | 0.49 | 0.43 | 0.58 | 0.49 | |
LD | 1 | 0.35 | 0.53 | 0.42 | 0.30 | 0.65 | 0.41 |
2 | 0.35 | 0.45 | 0.39 | 0.29 | 0.65 | 0.40 | |
3 | 0.39 | 0.56 | 0.46 | 0.33 | 0.67 | 0.44 | |
4 | 0.35 | 0.36 | 0.35 | 0.39 | 0.49 | 0.44 | |
5 | 0.34 | 0.40 | 0.37 | 0.34 | 0.63 | 0.44 |
Plot Category | Methods | Threshold | CDM | BDM | ||||
---|---|---|---|---|---|---|---|---|
Precision | Recall | F-Score | Precision | Recall | F-Score | |||
HD | Multilayer | 150 | 0.49 | 0.61 | 0.54 | 0.37 | 0.71 | 0.48 |
170 | 0.47 | 0.59 | 0.52 | 0.50 | 0.58 | 0.54 | ||
Treetop | 3 | 0.63 | 0.56 | 0.59 | 0.67 | 0.80 | 0.73 | |
2 | 0.68 | 0.63 | 0.65 | 0.61 | 0.95 | 0.74 | ||
Multilayer | 150 | 0.40 | 0.87 | 0.55 | 0.46 | 0.73 | 0.57 | |
MD | 170 | 0.57 | 0.71 | 0.63 | 0.54 | 0.77 | 0.63 | |
Treetop | 3 | 0.77 | 0.78 | 0.78 | 0.56 | 0.74 | 0.64 | |
2 | 0.78 | 0.80 | 0.79 | 0.42 | 0.73 | 0.53 | ||
Multilayer | 150 | 0.52 | 0.63 | 0.57 | 0.42 | 0.73 | 0.54 | |
170 | 0.57 | 0.60 | 0.58 | 0.45 | 0.74 | 0.56 | ||
LD | Treetop | 3 | 0.74 | 0.69 | 0.71 | 0.61 | 0.63 | 0.62 |
2 | 0.70 | 0.77 | 0.73 | 0.52 | 0.72 | 0.60 |
Tree Species | Manchurian ash | Maple spp. | Monarch birch | Castor aralia | Magnolia spp. | Japanese oak | Spruce spp. | Japanese linden | Todo fir | Gap | |
---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | |||||||||||
PA | 0.44 | 0.33 | 0.67 | 0.71 | 0.72 | 0.98 | 0.92 | 0.73 | 0.98 | 1 | |
UA | 1.00 | 1.00 | 0.73 | 1.00 | 0.76 | 0.64 | 0.85 | 0.95 | 0.98 | 1 | |
Hellden | 0.72 | 0.67 | 0.70 | 0.86 | 0.74 | 0.81 | 0.89 | 0.84 | 0.98 | 1 | |
Short | 0.44 | 0.33 | 0.48 | 0.71 | 0.55 | 0.63 | 0.78 | 0.69 | 0.96 | 1 | |
Kappa Per Class | 0.45 | 0.34 | 0.67 | 0.76 | 0.69 | 0.99 | 0.90 | 0.72 | 0.97 | 1 | |
OA | 0.84 | ||||||||||
Kappa | 0.81 |
Tree Species | Manchurian ash | Maple spp. | Monarch birch | Castor aralia | Magnolia spp. | Japanese oak | Spruce spp. | Japanese linden | Todo fir | Gap | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|
Manchurian ash | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
Maplespp. | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
Monarch birch | 1 | 0 | 8 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 11 |
Castor aralia | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
Magnoliaspp. | 1 | 1 | 1 | 1 | 13 | 0 | 0 | 0 | 0 | 0 | 17 |
Japanese oak | 3 | 8 | 3 | 0 | 3 | 46 | 1 | 7 | 1 | 0 | 72 |
Sprucespp. | 0 | 3 | 0 | 0 | 0 | 1 | 23 | 0 | 0 | 0 | 27 |
Japanese linden | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 19 | 0 | 0 | 20 |
Todo fir | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 45 | 0 | 46 |
Gap | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33 | 33 |
Sum | 9 | 18 | 12 | 7 | 18 | 47 | 25 | 26 | 46 | 33 | 241 |
Tree Species | Manchurian ash | Maple spp. | Monarch birch | Castor aralia | Magnolia spp. | Japanese oak | Spruce spp. | Japanese linden | Todo fir | Gap | |
---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | |||||||||||
PA | 0.78 | 0.67 | 0.83 | 0.86 | 1.00 | 0.96 | 0.96 | 0.85 | 0.96 | 1.00 | |
UA | 1.00 | 0.92 | 0.83 | 1.00 | 1.00 | 0.83 | 0.89 | 0.92 | 0.96 | 0.97 | |
Hellden | 0.89 | 0.79 | 0.83 | 0.93 | 1.00 | 0.90 | 0.92 | 0.88 | 0.96 | 0.98 | |
Short | 0.78 | 0.62 | 0.69 | 0.86 | 1.00 | 0.80 | 0.85 | 0.78 | 0.91 | 0.97 | |
Kappa Per Class | 0.80 | 0.61 | 0.82 | 0.85 | 1.00 | 1.00 | 0.96 | 0.87 | 0.94 | 1.00 | |
OA | 0.92 | ||||||||||
Kappa | 0.91 |
Tree Species | Manchurian ash | Maple spp. | Monarch birch | Castor aralia | Magnolia spp. | Japanese oak | Spruce spp. | Japanese linden | Todo fir | Gap | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|
Manchurian ash | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
Maplespp. | 0 | 12 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 13 |
Monarch birch | 0 | 0 | 10 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 12 |
Castor aralia | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
Magnoliaspp. | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 18 |
Japanese oak | 1 | 5 | 0 | 1 | 0 | 45 | 0 | 2 | 0 | 0 | 54 |
Sprucespp. | 0 | 0 | 0 | 0 | 0 | 0 | 24 | 2 | 1 | 0 | 27 |
Japanese linden | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 22 | 0 | 0 | 24 |
Todo fir | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 44 | 0 | 46 |
Gap | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33 | 34 |
Sum | 9 | 18 | 12 | 7 | 18 | 47 | 25 | 26 | 46 | 33 | 241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karthigesu, J.; Owari, T.; Tsuyuki, S.; Hiroshima, T. Improving Individual Tree Crown Detection and Species Classification in a Complex Mixed Conifer–Broadleaf Forest Using Two Machine Learning Models with Different Combinations of Metrics Derived from UAV Imagery. Geomatics 2025, 5, 32. https://doi.org/10.3390/geomatics5030032
Karthigesu J, Owari T, Tsuyuki S, Hiroshima T. Improving Individual Tree Crown Detection and Species Classification in a Complex Mixed Conifer–Broadleaf Forest Using Two Machine Learning Models with Different Combinations of Metrics Derived from UAV Imagery. Geomatics. 2025; 5(3):32. https://doi.org/10.3390/geomatics5030032
Chicago/Turabian StyleKarthigesu, Jeyavanan, Toshiaki Owari, Satoshi Tsuyuki, and Takuya Hiroshima. 2025. "Improving Individual Tree Crown Detection and Species Classification in a Complex Mixed Conifer–Broadleaf Forest Using Two Machine Learning Models with Different Combinations of Metrics Derived from UAV Imagery" Geomatics 5, no. 3: 32. https://doi.org/10.3390/geomatics5030032
APA StyleKarthigesu, J., Owari, T., Tsuyuki, S., & Hiroshima, T. (2025). Improving Individual Tree Crown Detection and Species Classification in a Complex Mixed Conifer–Broadleaf Forest Using Two Machine Learning Models with Different Combinations of Metrics Derived from UAV Imagery. Geomatics, 5(3), 32. https://doi.org/10.3390/geomatics5030032