Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 28839 KiB  
Article
Use of Smartphone Lidar Technology for Low-Cost 3D Building Documentation with iPhone 13 Pro: A Comparative Analysis of Mobile Scanning Applications
by Cigdem Askar and Harald Sternberg
Geomatics 2023, 3(4), 563-579; https://doi.org/10.3390/geomatics3040030 - 11 Dec 2023
Cited by 7 | Viewed by 4698
Abstract
Laser scanning technology has long been the preferred method for capturing interior scenes in various industries. With a growing market, smaller and more affordable scanners have emerged, offering end products with sufficient accuracy. While not on par with professional scanners, Apple has made [...] Read more.
Laser scanning technology has long been the preferred method for capturing interior scenes in various industries. With a growing market, smaller and more affordable scanners have emerged, offering end products with sufficient accuracy. While not on par with professional scanners, Apple has made laser scanning technology accessible to users with the introduction of the new iPhone Pro models, democratizing 3D scanning. Thus, this study aimed to assess the performance of the iPhone’s lidar technology as a low-cost solution for building documentation. Four scanning applications were evaluated to determine the accuracy, precision, and user experience of the generated point clouds compared with a terrestrial laser scanner. The results reveal varying performances on the same device, highlighting the influence of software. Notably, there is room for improvement, particularly in tracking the device’s position through software solutions. As it stands, the technology is well suited for applications such as indoor navigation and the generation of quick floor plans in the context of building documentation. Full article
Show Figures

Figure 1

22 pages, 5809 KiB  
Article
Evaluating OSM Building Footprint Data Quality in Québec Province, Canada from 2018 to 2023: A Comparative Study
by Milad Moradi, Stéphane Roche and Mir Abolfazl Mostafavi
Geomatics 2023, 3(4), 541-562; https://doi.org/10.3390/geomatics3040029 - 9 Dec 2023
Cited by 3 | Viewed by 1463
Abstract
OpenStreetMap (OSM) is among the most prominent Volunteered Geographic Information (VGI) initiatives, aiming to create a freely accessible world map. Despite its success, the data quality of OSM remains variable. This study begins by identifying the quality metrics proposed by earlier research to [...] Read more.
OpenStreetMap (OSM) is among the most prominent Volunteered Geographic Information (VGI) initiatives, aiming to create a freely accessible world map. Despite its success, the data quality of OSM remains variable. This study begins by identifying the quality metrics proposed by earlier research to assess the quality of OSM building footprints. It then evaluates the quality of OSM building data from 2018 and 2023 for five cities within Québec, Canada. The analysis reveals a significant quality improvement over time. In 2018, the completeness of OSM building footprints in the examined cities averaged around 5%, while by 2023, it had increased to approximately 35%. However, this improvement was not evenly distributed. For example, Shawinigan saw its completeness surge from 2% to 99%. The study also finds that OSM contributors were more likely to digitize larger buildings before smaller ones. Positional accuracy saw enhancement, with the average error shrinking from 3.7 m in 2018 to 2.3 m in 2023. The average distance measure suggests a modest increase in shape accuracy over the same period. Overall, while the quality of OSM building footprints has indeed improved, this study shows that the extent of the improvement varied significantly across different cities. Shawinigan experienced a substantial increase in data quality compared to its counterparts. Full article
Show Figures

Figure 1

20 pages, 4100 KiB  
Article
Temporal Autocorrelation of Sentinel-1 SAR Imagery for Detecting Settlement Expansion
by James Kapp and Jaco Kemp
Geomatics 2023, 3(3), 427-446; https://doi.org/10.3390/geomatics3030023 - 21 Aug 2023
Viewed by 1352
Abstract
Urban areas are rapidly expanding globally. The detection of settlement expansion can, however, be challenging due to the rapid rate of expansion, especially for informal settlements. This paper presents a solution in the form of an unsupervised autocorrelation-based approach. Temporal autocorrelation function (ACF) [...] Read more.
Urban areas are rapidly expanding globally. The detection of settlement expansion can, however, be challenging due to the rapid rate of expansion, especially for informal settlements. This paper presents a solution in the form of an unsupervised autocorrelation-based approach. Temporal autocorrelation function (ACF) values derived from hyper-temporal Sentinel-1 imagery were calculated for all time lags using VV backscatter values. Various thresholds were applied to these ACF values in order to create urban change maps. Two different orbital combinations were tested over four informal settlement areas in South Africa. Promising results were achieved in the two of the study areas with mean normalized Matthews Correlation Coefficients (MCCn) of 0.79 and 0.78. A lower performance was obtained in the remaining two areas (mean MCCn of 0.61 and 0.65) due to unfavorable building orientations and low building densities. The first results also indicate that the most stable and optimal ACF-based threshold of 95 was achieved when using images from both relative orbits, thereby incorporating more incidence angles. The results demonstrate the capacity of ACF-based methods for detecting settlement expansion. Practically, this ACF-based method could be used to reduce the time and labor costs of detecting and mapping newly built settlements in developing regions. Full article
(This article belongs to the Special Issue Urban Morphology and Environment Monitoring)
Show Figures

Figure 1

22 pages, 15308 KiB  
Project Report
A Wide-Area Deep Ocean Floor Mapping System: Design and Sea Tests
by Paul Ryu, David Brown, Kevin Arsenault, Byunggu Cho, Andrew March, Wael H. Ali, Aaron Charous and Pierre F. J. Lermusiaux
Geomatics 2023, 3(1), 290-311; https://doi.org/10.3390/geomatics3010016 - 22 Mar 2023
Cited by 5 | Viewed by 6570
Abstract
Mapping the seafloor in the deep ocean is currently performed using sonar systems on surface vessels (low-resolution maps) or undersea vessels (high-resolution maps). Surface-based mapping can cover a much wider search area and is not burdened by the complex logistics required for deploying [...] Read more.
Mapping the seafloor in the deep ocean is currently performed using sonar systems on surface vessels (low-resolution maps) or undersea vessels (high-resolution maps). Surface-based mapping can cover a much wider search area and is not burdened by the complex logistics required for deploying undersea vessels. However, practical size constraints for a towbody or hull-mounted sonar array result in limits in beamforming and imaging resolution. For cost-effective high-resolution mapping of the deep ocean floor from the surface, a mobile wide-aperture sparse array with subarrays distributed across multiple autonomous surface vessels (ASVs) has been designed. Such a system could enable a surface-based sensor to cover a wide area while achieving high-resolution bathymetry, with resolution cells on the order of 1 m2 at a 6 km depth. For coherent 3D imaging, such a system must dynamically track the precise relative position of each boat’s sonar subarray through ocean-induced motions, estimate water column and bottom reflection properties, and mitigate interference from the array sidelobes. Sea testing of this core sparse acoustic array technology has been conducted, and planning is underway for relative navigation testing with ASVs capable of hosting an acoustic subarray. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Nautical Cartography)
Show Figures

Figure 1

46 pages, 2047 KiB  
Review
Indoor Navigation—User Requirements, State-of-the-Art and Developments for Smartphone Localization
by Günther Retscher
Geomatics 2023, 3(1), 1-46; https://doi.org/10.3390/geomatics3010001 - 27 Dec 2022
Cited by 12 | Viewed by 4614
Abstract
A variety of positioning systems have emerged for indoor localization which are based on several system strategies, location methods, and technologies while using different signals, such as radio frequency (RF) signals. Demands regarding positioning in terms of performance, robustness, availability and positioning accuracies [...] Read more.
A variety of positioning systems have emerged for indoor localization which are based on several system strategies, location methods, and technologies while using different signals, such as radio frequency (RF) signals. Demands regarding positioning in terms of performance, robustness, availability and positioning accuracies are increasing. The overall goal of indoor positioning is to provide GNSS-like functionality in places where GNSS signals are not available. Analysis of the state-of-the-art indicates that although a lot of work is being done to combine both the outdoor and indoor positioning systems, there are still many problems and challenges to be solved. Most people moving on the city streets and interiors of public facilities have a smartphone, and most professionals working in public facilities or construction sites are equipped with tablets or smartphone devices. If users already have the necessary equipment, they should be provided with further functionalities that will help them in day-to-day life and work. In this review study, user requirements and the state-of-the-art in system development for smartphone localization are discussed. In particular, localization with current and upcoming ‘signals-of-opportunity’ (SoP) for use in mobile devices is the main focus of this paper. Full article
(This article belongs to the Special Issue New Advances in Indoor Navigation)
Show Figures

Figure 1

13 pages, 4322 KiB  
Article
Denmark’s Depth Model: Compilation of Bathymetric Data within the Danish Waters
by Giuseppe Masetti, Ove Andersen, Nicki R. Andreasen, Philip S. Christiansen, Marcus A. Cole, James P. Harris, Kasper Langdahl, Lasse M. Schwenger and Ian B. Sonne
Geomatics 2022, 2(4), 486-498; https://doi.org/10.3390/geomatics2040026 - 11 Nov 2022
Cited by 6 | Viewed by 4858
Abstract
Denmark’s Depth Model (DDM) is a Digital Bathymetric Model based on hundreds of bathymetric survey datasets and historical sources within the Danish Exclusive Economic Zone. The DDM represents the first publicly released model covering the Danish waters with a grid resolution of 50 [...] Read more.
Denmark’s Depth Model (DDM) is a Digital Bathymetric Model based on hundreds of bathymetric survey datasets and historical sources within the Danish Exclusive Economic Zone. The DDM represents the first publicly released model covering the Danish waters with a grid resolution of 50 m. When modern datasets are not available for a given area, historical sources are used, or, as the last resort, interpolation is applied. The model is generated by averaging depths values from validated sources, thus, not targeted for safety of navigation. The model is available by download from the Danish Geodata Agency website. DDM is also made available by means of Open Geospatial Consortium web services (i.e., Web Map Service). The original datasets—not distributed with the model—are described in the auxiliary layers to provide information about the bathymetric sources used during the compilation. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Nautical Cartography)
Show Figures

Figure 1

29 pages, 10400 KiB  
Review
Three Dimensional Change Detection Using Point Clouds: A Review
by Abderrazzaq Kharroubi, Florent Poux, Zouhair Ballouch, Rafika Hajji and Roland Billen
Geomatics 2022, 2(4), 457-485; https://doi.org/10.3390/geomatics2040025 - 17 Oct 2022
Cited by 22 | Viewed by 8110
Abstract
Change detection is an important step for the characterization of object dynamics at the earth’s surface. In multi-temporal point clouds, the main challenge is to detect true changes at different granularities in a scene subject to significant noise and occlusion. To better understand [...] Read more.
Change detection is an important step for the characterization of object dynamics at the earth’s surface. In multi-temporal point clouds, the main challenge is to detect true changes at different granularities in a scene subject to significant noise and occlusion. To better understand new research perspectives in this field, a deep review of recent advances in 3D change detection methods is needed. To this end, we present a comprehensive review of the state of the art of 3D change detection approaches, mainly those using 3D point clouds. We review standard methods and recent advances in the use of machine and deep learning for change detection. In addition, the paper presents a summary of 3D point cloud benchmark datasets from different sensors (aerial, mobile, and static), together with associated information. We also investigate representative evaluation metrics for this task. To finish, we present open questions and research perspectives. By reviewing the relevant papers in the field, we highlight the potential of bi- and multi-temporal point clouds for better monitoring analysis for various applications. Full article
Show Figures

Figure 1

16 pages, 3451 KiB  
Article
A Practical Algorithm for the Viewpoint Planning of Terrestrial Laser Scanners
by Fengman Jia and Derek D. Lichti
Geomatics 2022, 2(2), 181-196; https://doi.org/10.3390/geomatics2020011 - 22 Apr 2022
Cited by 6 | Viewed by 2606
Abstract
Applications using terrestrial laser scanners (TLS) have been skyrocketing in the past two decades. In a scanning project, the configuration of scans is a critical issue as it has significant effects on the project cost and the quality of the product. In this [...] Read more.
Applications using terrestrial laser scanners (TLS) have been skyrocketing in the past two decades. In a scanning project, the configuration of scans is a critical issue as it has significant effects on the project cost and the quality of the product. In this paper, a practical strategy is proposed to resolve the problem of the optimal placement of the terrestrial laser scanner. The method attempts to reduce the number of viewpoints under the premise that the scenes are fully covered. In addition, the approach is designed in a way that the solutions can be efficiently explored. The method has been tested on 540 polygons simulated with different sizes and complexities. The results have also been compared with a benchmark strategy in terms of the optimality of the solutions and runtime. It is concluded that our proposed algorithm ties or reduces the number of viewpoints in the benchmark paper in 85.6% of the 540 tests. For complex environments, the method can potentially reduce the project cost by 10%. Although with relatively lower efficiency, our method can still reach the solution within a few minutes for a polygon with up to 500 vertices. Full article
Show Figures

Figure 1

Back to TopTop