Previous Issue
Volume 7, June
 
 

Clean Technol., Volume 7, Issue 3 (September 2025) – 22 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
25 pages, 14212 KiB  
Article
Optimization of Composting Locations for Livestock Manure in Bangladesh: Spatial Analysis-Based Potential Environmental Benefits Assessment
by Zinat Mahal, Helmut Yabar and Md Faisal Abedin Khan
Clean Technol. 2025, 7(3), 72; https://doi.org/10.3390/cleantechnol7030072 - 22 Aug 2025
Abstract
For sustainable livestock manure management, composting is a common practice for supplying nutrients to crops. Therefore, optimizing plant locations for composting from livestock manure is essential in Bangladesh. This study performed a land suitability analysis using Geographic Information System (GIS) spatial modeling to [...] Read more.
For sustainable livestock manure management, composting is a common practice for supplying nutrients to crops. Therefore, optimizing plant locations for composting from livestock manure is essential in Bangladesh. This study performed a land suitability analysis using Geographic Information System (GIS) spatial modeling to identify suitable sites for composting plants, which was optimized through network analysis. After spatial analysis, 15, 42, and 147 locations were identified for large-scale, medium-scale, and small-scale manure-based compost production, respectively, across different scenarios. As a result, approximately 1537.74 kilotons/year of compost can be generated from 2703.86 kilotons of livestock manure, replacing about 44.31% of synthetic fertilizer use in Bangladesh in 2024. The potential reduction in greenhouse gas (GHG) emissions was assessed at 1986.76 gigagrams CO2eq/year, with nutrient leaching reduction potentials of 15.11 and 10.98 kilotons/year for nitrogen and phosphorus, respectively. Additionally, around 4.51 million tons of livestock manure can be disposed of annually by establishing composting plants. However, assessing the potential environmental benefits by optimizing composting plant locations can support the development of strategies to produce organic fertilizer by utilizing natural resources in Bangladesh. Full article
Show Figures

Figure 1

22 pages, 3516 KiB  
Article
Simultaneous Saccharification and Fermentation of Pretreated Corn Cobs by Mucor indicus for Ethanol Production
by Nenad Marđetko, Antonija Trontel, Mario Novak, Mladen Pavlečić, Ana Dobrinčić, Vlatka Petravić Tominac and Božidar Šantek
Clean Technol. 2025, 7(3), 71; https://doi.org/10.3390/cleantechnol7030071 - 15 Aug 2025
Viewed by 819
Abstract
This study evaluates the enzymatic hydrolysis of pretreated corn cobs (PCCs) using a blend of commercial enzymes (Cellulase enzyme blend and Viscozyme L), followed by simultaneous saccharification and fermentation (SSF) with Mucor indicus DSM 2185 for ethanol production. A combination of 2% (vol [...] Read more.
This study evaluates the enzymatic hydrolysis of pretreated corn cobs (PCCs) using a blend of commercial enzymes (Cellulase enzyme blend and Viscozyme L), followed by simultaneous saccharification and fermentation (SSF) with Mucor indicus DSM 2185 for ethanol production. A combination of 2% (vol vol−1) Cellulase enzyme blend and 5.18% (vol vol−1) Viscozyme L, corresponding to an enzyme loading of 48.9 FPU/gPCCs, enabled near-complete hydrolysis of 40 g L−1 PCCs within 6–48 h, achieving 92.66% total carbohydrate conversion into fermentable sugars. In SSF experiments conducted in Erlenmeyer flasks, optimal ethanol production in matrix nutrient medium (MNM) reached 14.95 g L−1, with a conversion coefficient of 0.373 g g−1 at 30 °C over a 48 h period. Scale-up of the bioprocess in a 1.5 L stirred-tank bioreactor at 30 °C resulted in an ethanol concentration of 16.46 g L−1, a total carbohydrate conversion of 86.27%, and a substrate-to-ethanol conversion coefficient of 0.44 g g−1 within 22 h. Minor secondary metabolites, including 0.88 g L−1 xylitol and 0.26 g L−1 glycerol, were also detected. Overall, the results demonstrate the potential of M. indicus in combination with commercial enzyme blends as a scalable strategy for industrial ethanol production. Full article
Show Figures

Figure 1

14 pages, 2449 KiB  
Article
Improving Environmental Sustainability of Food-Contact Polypropylene Packaging Production
by Alberto Pietro Damiano Baltrocchi, Francesco Romagnoli, Marco Carnevale Miino and Vincenzo Torretta
Clean Technol. 2025, 7(3), 70; https://doi.org/10.3390/cleantechnol7030070 - 12 Aug 2025
Viewed by 284
Abstract
Most types of packaging that are in contact with food are made of polypropylene (PP), and the environmental impacts of their production and use are still high. Currently, incorporating recycled PP in the food industry is not a viable solution for reducing environmental [...] Read more.
Most types of packaging that are in contact with food are made of polypropylene (PP), and the environmental impacts of their production and use are still high. Currently, incorporating recycled PP in the food industry is not a viable solution for reducing environmental impacts due to its complexity and high costs. For this reason, understanding how to reduce the environmental impacts derived from the production process of plastic food packaging is essential. This study aims to analyze the environmental performance of the production of single-use PP food-contact packaging using the Life Cycle Assessment approach in order to estimate the effectiveness of proposed solutions to mitigate its impacts. Furthermore, the economic savings from the avoided CO2 emissions were estimated. To achieve these goals, three diverse scenarios with different energy source mixes were studied. The analysis was carried out using SimaPro v9.5 software, the Ecoinvent v3.8 database, and a ReCiPe 2016 impact assessment. The findings show that upstream processes are the main contributors to the environmental profile, with 67% of the total impact, followed by core processes, with 32% of the total impacts. An increase in the use of renewable energy can lead to environmental benefits, with an impact reduction ranging from 13% to 61% depending on the energy source mix. Furthermore, up to EUR 12,458 per 100 tons of units produced was saved due to the lack of CO2 emissions. The results of this research will be useful to encourage the use of renewable energy in the processes of PP packaging production as an alternative when polymer replacement is difficult. Full article
Show Figures

Graphical abstract

25 pages, 959 KiB  
Article
Analysis of Biodiesel from Algae Using the SWOT-AHP Method: Strategic Insights for a Green Energy Future
by Mladen Bošnjaković, Robert Santa, Antonija Vučić and Zoran Crnac
Clean Technol. 2025, 7(3), 69; https://doi.org/10.3390/cleantechnol7030069 - 12 Aug 2025
Viewed by 300
Abstract
Algal biodiesel is a promising renewable energy source due to its high lipid productivity and environmental benefits compared to conventional diesel fuels. This study presents a SWOT technique (strengths, weaknesses, opportunities, and threats) and an analytical hierarchy process (AHP) to assess the current [...] Read more.
Algal biodiesel is a promising renewable energy source due to its high lipid productivity and environmental benefits compared to conventional diesel fuels. This study presents a SWOT technique (strengths, weaknesses, opportunities, and threats) and an analytical hierarchy process (AHP) to assess the current status and future prospects of algae-based biodiesel production. Data from the last decade on algae production was analysed, highlighting significant technological improvements such as genetic engineering, novel extraction techniques, and integration with circular economy approaches. The results show that algal biodiesel can achieve a lipid content of up to 75% of dry biomass and reduce greenhouse gas emissions by up to 90% compared to fossil diesel. Key strengths include high biomass yield and effective CO2 sequestration, while challenges include scaling production and reducing capital costs. Opportunities lie in product diversification and policy support, while threats include competition from battery electric vehicles and regulatory barriers. The AHP analysis provides a quantitative framework for prioritising strategies to improve the economic viability and environmental sustainability of algae biodiesel. In the short term (by 2030), algae-based biodiesel is expected to be used mainly as a blend with fossil diesel and to gain traction in niche applications where electric vehicles face competitiveness challenges (marine and heavy road transport). In the long term (by 2050), algae-based biodiesel will play a role in certain sectors that are integrated into the circular economy. Full article
Show Figures

Figure 1

29 pages, 2829 KiB  
Review
Hydrogen-Powered Marine Vessels: A Rewarding yet Challenging Route to Decarbonization
by Rashed Kaiser and Ayesha Munira Chowdhury
Clean Technol. 2025, 7(3), 68; https://doi.org/10.3390/cleantechnol7030068 - 11 Aug 2025
Viewed by 486
Abstract
The maritime industry, while indispensable to global trade, is a significant contributor to greenhouse gas (GHG) emissions, accounting for approximately 3% of global emissions. As international regulatory bodies, particularly the International Maritime Organization (IMO), push for ambitious decarbonization targets, hydrogen-based technologies have emerged [...] Read more.
The maritime industry, while indispensable to global trade, is a significant contributor to greenhouse gas (GHG) emissions, accounting for approximately 3% of global emissions. As international regulatory bodies, particularly the International Maritime Organization (IMO), push for ambitious decarbonization targets, hydrogen-based technologies have emerged as promising alternatives to conventional fossil fuels. This review critically examines the potential of hydrogen fuels—including hydrogen fuel cells (HFCs) and hydrogen internal combustion engines (H2ICEs)—for maritime applications. It provides a comprehensive analysis of hydrogen production methods, storage technologies, onboard propulsion systems, and the associated techno-economic and regulatory challenges. A detailed life cycle assessment (LCA) compares the environmental impacts of hydrogen-powered vessels with conventional diesel engines, revealing significant benefits particularly when green or blue hydrogen sources are utilized. Despite notable hurdles—such as high production and retrofitting costs, storage limitations, and infrastructure gaps—hydrogen holds considerable promise in aligning maritime operations with global sustainability goals. The study underscores the importance of coordinated government policies, technological innovation, and international collaboration to realize hydrogen’s potential in decarbonizing the marine sector. Full article
Show Figures

Figure 1

20 pages, 3208 KiB  
Article
Upstream Microplastic Removal in Industrial Wastewater: A Pilot Study on Agglomeration-Fixation-Reaction Based Treatment for Water Reuse and Waste Recovery
by Anika Korzin, Michael Toni Sturm, Erika Myers, Dennis Schober, Pieter Ronsse and Katrin Schuhen
Clean Technol. 2025, 7(3), 67; https://doi.org/10.3390/cleantechnol7030067 - 6 Aug 2025
Viewed by 440
Abstract
This pilot study investigated an automated pilot plant for removing microplastics (MPs) from industrial wastewater that are generated during packaging production. MP removal is based on organosilane-induced agglomeration-fixation (clump & skim technology) followed by separation. The wastewater had high MP loads (1725 ± [...] Read more.
This pilot study investigated an automated pilot plant for removing microplastics (MPs) from industrial wastewater that are generated during packaging production. MP removal is based on organosilane-induced agglomeration-fixation (clump & skim technology) followed by separation. The wastewater had high MP loads (1725 ± 377 mg/L; 673 ± 183 million particles/L) and an average COD of 7570 ± 1339 mg/L. Over 25 continuous test runs, the system achieved consistent performance, removing an average of 97.4% of MPs by mass and 99.1% by particle count, while reducing the COD by 78.8%. Projected over a year, this equates to preventing 1.7 tons of MPs and 6 tons of COD from entering the sewage system. Turbidity and photometric TSS measurements proved useful for process control. The approach supports water reuse—with water savings up to 80%—and allows recovery of agglomerates for recycling and reuse. Targeting pollutant removal upstream at the source provides multiple financial and environmental benefits, including lower overall energy demands, higher removal efficiencies, and process water reuse. This provides financial and environmental incentives for industries to implement sustainable solutions for pollutants and microplastic removal. Full article
Show Figures

Figure 1

22 pages, 2179 KiB  
Article
Conversion of Oil Palm Kernel Shell Wastes into Active Biocarbons by N2 Pyrolysis and CO2 Activation
by Aik Chong Lua
Clean Technol. 2025, 7(3), 66; https://doi.org/10.3390/cleantechnol7030066 - 4 Aug 2025
Viewed by 468
Abstract
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed [...] Read more.
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed by CO2 activation, was used to produce the active biocarbon. The optimum pyrolysis conditions that produced the largest BET surface area of 519.1 m2/g were a temperature of 600 °C, a hold time of 2 h, a nitrogen flow rate of 150 cm3/min, and a heating rate of 10 °C/min. The optimum activation conditions to prepare the active biocarbon with the largest micropore surface area or the best micropore/BET surface area combination were a temperature of 950 °C, a CO2 flow rate of 300 cm3/min, a heating rate of 10 °C/min, and a hold time of 3 h, yielding BET and micropore surface areas of 1232.3 and 941.0 m2/g, respectively, and consisting of 76.36% of micropores for the experimental optimisation technique adopted here. This study underscores the importance of optimising both the pyrolysis and activation conditions to produce an active biocarbon with a maximum micropore surface area for gaseous adsorption applications, especially to capture CO2 greenhouse gas, to mitigate global warming and climate change. Such a comprehensive and detailed study on the conversion of oil palm kernel shell into active biocarbon is lacking in the open literature. The research results provide a practical blueprint on the process parameters and technical know-how for the industrial production of highly microporous active biocarbons prepared from oil palm kernel shells. Full article
Show Figures

Graphical abstract

19 pages, 4205 KiB  
Article
CFD Simulation of the Interaction Between a Macrobubble and a Dilute Dispersion of Oil Droplets in Quiescent Water
by Saad N. Saleh and Shahzad Barghi
Clean Technol. 2025, 7(3), 65; https://doi.org/10.3390/cleantechnol7030065 - 3 Aug 2025
Viewed by 295
Abstract
Wastewater generation is a growing concern in the preliminary treatment of heavy crude oil and tar sand. The separation of fine oil droplets from water by flotation is a critical process in the production of bitumen from tar sand. The flow structure from [...] Read more.
Wastewater generation is a growing concern in the preliminary treatment of heavy crude oil and tar sand. The separation of fine oil droplets from water by flotation is a critical process in the production of bitumen from tar sand. The flow structure from a high-resolution simulation of a single air macrobubble (>3 mm diameter) rising through water in the presence of a very dilute dispersion of mono-sized oil microdroplets (30 μm) under quiescent conditions is presented. A combined model of computational fluid dynamics (CFD), a volume of fluid (VOF) multiphase approach, and the discrete phase method (DPM) was developed to simulate bubble dynamics, the trajectories of the dispersed oil droplet, and the interaction between the air bubble and the oil droplet in quiescent water. The CFD–VOF–DPM combined model reproduced the interacting dynamics of the bubble and oil droplets in water at the bubble–droplet scale. With an extremely large diameter ratio between the bubble and the dispersed oil droplet, this model clearly demonstrated that the dominant mechanism for the interaction was the hydrodynamic capture of oil droplets in the wake of a rising air macrobubble. The entrainment of the oil droplets into the wake of the rising bubbles was strongly influenced by the bubble’s shape. Full article
Show Figures

Figure 1

20 pages, 5041 KiB  
Review
Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications
by Ahmed Dawood, Mohsen Ghali, Laura Micheli, Medhat H. Hashem and Clara Piccirillo
Clean Technol. 2025, 7(3), 64; https://doi.org/10.3390/cleantechnol7030064 - 1 Aug 2025
Viewed by 349
Abstract
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots [...] Read more.
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots (AB-CDs)—briefly summarizing green synthesis approaches (e.g., hydrothermal carbonization, pyrolysis, and microwave-assisted treatments) that minimize environmental impact. Subsequent sections highlight the varied applications of AB-CDs, particularly in biosensing (including the detection of marine biotoxins), environmental monitoring of water pollutants, and drug delivery systems. Physically AB-CDs show unique optical and physicochemical properties—tunable fluorescence, high quantum yields, enhanced sensitivity, selectivity, and surface bio-functionalization—that make them ideal for a wide array of applications. Overall, the discussion underlines the significance of this approach; indeed, transforming aquatic biomass into carbon dots can contribute to sustainable nanotechnology, offering eco-friendly solutions in sensing, environmental monitoring, and therapeutics. Finally, current challenges and future research directions are discussed to give a perspective of the potential of AB-CDs; the final aim is their integration into multifunctional, real-time monitoring and therapeutic systems—for sustainable nanotechnology innovations. Full article
Show Figures

Graphical abstract

28 pages, 1472 KiB  
Review
Social Acceptability of Waste-to-Energy: Research Hotspots, Technologies, and Factors
by Casper Boongaling Agaton and Marween Joshua A. Santos
Clean Technol. 2025, 7(3), 63; https://doi.org/10.3390/cleantechnol7030063 - 24 Jul 2025
Viewed by 893
Abstract
Waste-to-energy (WtE) are clean technologies that support a circular economy by providing solutions to managing non-recyclable waste while generating alternative energy sources. Despite the promising benefits, technology adoption is challenged by financing constraints, technical maturity, environmental impacts, supporting policies, and public acceptance. A [...] Read more.
Waste-to-energy (WtE) are clean technologies that support a circular economy by providing solutions to managing non-recyclable waste while generating alternative energy sources. Despite the promising benefits, technology adoption is challenged by financing constraints, technical maturity, environmental impacts, supporting policies, and public acceptance. A growing number of studies analyzed the acceptability of WtE and identified the factors affecting the adoption of WtE technologies. This study aims to analyze these research hotspots, technologies, and acceptability factors by combining bibliometric and systematic analyses. An initial search from the Web of Science and Scopus databases identified 817 unique documents, and the refinement resulted in 109 for data analysis. The results present a comprehensive overview of the state-of-the-art, providing researchers a basis for future research directions. Among the WtE technologies in the reviewed literature are incineration, anaerobic digestion, gasification, and pyrolysis, with limited studies about refuse-derived fuel and landfilling with gas recovery. The identified common factors include perceived risks, trust, attitudes, perceived benefits, “Not-In-My-BackYard” (NIMBY), awareness, and knowledge. Moreover, the findings present valuable insights for policymakers, practitioners, and WtE project planners to support WtE adoption while achieving sustainable, circular, and low-carbon economies. Full article
Show Figures

Figure 1

55 pages, 1120 KiB  
Review
An Overview of Biodiesel Production via Heterogeneous Catalysts: Synthesis, Current Advances, and Challenges
by Maya Yaghi, Sandra Chidiac, Sary Awad, Youssef El Rayess and Nancy Zgheib
Clean Technol. 2025, 7(3), 62; https://doi.org/10.3390/cleantechnol7030062 - 15 Jul 2025
Viewed by 889
Abstract
Biodiesel, a renewable and environmentally friendly alternative to fossil fuels, has attracted significant attention due to its potential to reduce greenhouse gas emissions. However, high production costs and complex processing remain challenges. Heterogeneous catalysts have shown promise in overcoming these barriers by offering [...] Read more.
Biodiesel, a renewable and environmentally friendly alternative to fossil fuels, has attracted significant attention due to its potential to reduce greenhouse gas emissions. However, high production costs and complex processing remain challenges. Heterogeneous catalysts have shown promise in overcoming these barriers by offering benefits, such as easy separation, reusability, low-cost raw materials, and the ability to reduce reaction times and energy consumption. This review evaluates key classes of heterogeneous catalysts, such as metal oxides, ion exchange resins, and zeolites, and their performance in transesterification and esterification processes. It highlights the importance of catalyst preparation methods, textural properties, including surface area, pore volume, and pore size, activation techniques, and critical operational parameters, like the methanol-to-oil ratio, temperature, time, catalyst loading, and reusability. The analysis reveals that catalysts supported on high surface area materials often achieve higher biodiesel yields, while metal oxides derived from natural sources provide cost-effective and sustainable options. Challenges, such as catalyst deactivation, sensitivity to feedstock composition, and variability in performance, are discussed. Overall, the findings underscore the potential of heterogeneous catalysts to enhance biodiesel production efficiency, although further optimization and standardized evaluation protocols are necessary for their broader industrial application. Full article
Show Figures

Figure 1

19 pages, 3699 KiB  
Article
Development of Poly(diallyldimethylammonium) Chloride-Modified Activated Carbon for Efficient Adsorption of Methyl Red in Aqueous Systems
by Simeng Li and Madjid Mohseni
Clean Technol. 2025, 7(3), 61; https://doi.org/10.3390/cleantechnol7030061 - 15 Jul 2025
Viewed by 516
Abstract
A modified activated carbon (AC) was developed by modifying with poly(diallyldimethylammonium) chloride (PDADMAC) to enhance its adsorption performance for water treatment applications. Different PDADMAC concentrations were explored and evaluated using methyl red as a model contaminant, with 8 w/v% PDADMAC [...] Read more.
A modified activated carbon (AC) was developed by modifying with poly(diallyldimethylammonium) chloride (PDADMAC) to enhance its adsorption performance for water treatment applications. Different PDADMAC concentrations were explored and evaluated using methyl red as a model contaminant, with 8 w/v% PDADMAC yielding the best adsorption performance. The kinetics data were well described by the pseudo-first-order equation and homogeneous surface diffusion model. The Freundlich isotherm fit the equilibrium data well, indicating multilayer adsorption and diverse interaction types. The removal efficiency remained similar across a pH range of 5–9 and in the presence of background inorganic (NaCl)/organic compounds (sodium acetate) at different concentrations. Rapid small-scale column tests were performed to simulate continuous flow conditions, and the PDADMAC-modified AC effectively delayed the breakthrough of the contaminant compared to raw AC. Regeneration experiments showed that 0.1 M NaOH with 70% methanol effectively restored the adsorption capacity, retaining 80% of the initial efficiency after five cycles. Quantum chemical analysis revealed that non-covalent interactions, including electrostatic and Van der Waals forces, governed the adsorption mechanism. Overall, the results of this study prove that PDADMAC-AC shows great potential for enhanced organic contaminant removal in water treatment systems. Full article
Show Figures

Graphical abstract

34 pages, 2634 KiB  
Article
Toward Low-Carbon Mobility: Greenhouse Gas Emissions and Reduction Opportunities in Thailand’s Road Transport Sector
by Pantitcha Thanatrakolsri and Duanpen Sirithian
Clean Technol. 2025, 7(3), 60; https://doi.org/10.3390/cleantechnol7030060 - 11 Jul 2025
Viewed by 1489
Abstract
Road transportation is a major contributor to greenhouse gas (GHG) emissions in Thailand. This study assesses the potential for GHG mitigation in the road transport sector from 2018 to 2030. Emission factors for various vehicle types and technologies were derived using the International [...] Read more.
Road transportation is a major contributor to greenhouse gas (GHG) emissions in Thailand. This study assesses the potential for GHG mitigation in the road transport sector from 2018 to 2030. Emission factors for various vehicle types and technologies were derived using the International Vehicle Emissions (IVE) model. Emissions were then estimated based on country-specific vehicle data. In the baseline year 2018, total emissions were estimated at 23,914.02 GgCO2eq, primarily from pickups (24.38%), trucks (20.96%), passenger cars (19.48%), and buses (16.95%). Multiple mitigation scenarios were evaluated, including the adoption of electric vehicles (EVs), improvements in fuel efficiency, and a shift to renewable energy. Results indicate that transitioning all newly registered passenger cars (PCs) to EVs while phasing out older models could lead to a 16.42% reduction in total GHG emissions by 2030. The most effective integrated scenario, combining the expansion of electric vehicles with improvements in internal combustion engine efficiency, could achieve a 41.96% reduction, equivalent to 18,378.04 GgCO2eq. These findings highlight the importance of clean technology deployment and fuel transition policies in meeting Thailand’s climate goals, while providing a valuable database to support strategic planning and implementation. Full article
Show Figures

Figure 1

21 pages, 1583 KiB  
Review
Valorization of Agricultural Ashes from Cold and Temperate Regions as Alternative Supplementary Cementitious Materials: A Review
by A. Sadoon, M. T. Bassuoni and A. Ghazy
Clean Technol. 2025, 7(3), 59; https://doi.org/10.3390/cleantechnol7030059 - 11 Jul 2025
Viewed by 493
Abstract
The pursuit of sustainable alternatives to portland cement has become a global imperative within the construction sector, driven by the need to reduce carbon dioxide emissions and energy consumption. Among the promising alternatives, agricultural ashes have garnered attention for their potential as alternative [...] Read more.
The pursuit of sustainable alternatives to portland cement has become a global imperative within the construction sector, driven by the need to reduce carbon dioxide emissions and energy consumption. Among the promising alternatives, agricultural ashes have garnered attention for their potential as alternative supplementary cementitious materials (ASCMs), owing to their inherent pozzolanic properties when appropriately processed. However, the availability and utilization of these ashes have predominantly been concentrated in tropical and subtropical regions, where such biomass is more abundant. This review offers a comprehensive bibliometric analysis to identify and assess agricultural ashes (specifically switchgrass, barley, sunflower, and oat husks) that are cultivated in temperate and cold climates and exhibit potential for SCM application. The analysis aims to bridge the knowledge gap by systematically mapping the existing research landscape and highlighting underexplored resources suitable for cold-region implementation. Key processing parameters, including incineration temperature, retention duration, and post-combustion grinding techniques, are critically examined for their influence on the resulting ash’s physicochemical characteristics and pozzolanic reactivity. In addition, the effect on fresh, hardened, and durability properties was evaluated. Findings reveal that several crops grown in colder regions may produce ashes rich in reactive silica, thereby qualifying them as viable ASCM candidates and bioenergy sources. Notably, the ashes derived from switchgrass, barley, oats, and sunflowers demonstrate significant reactive silica content, reinforcing their potential in sustainable construction practices. Hence, this study underscores the multifaceted benefits of contributing to the decarbonization of the cement industry and circular economy, while addressing environmental challenges associated with biomass waste disposal and uncontrolled open-air combustion. Full article
Show Figures

Figure 1

48 pages, 5755 KiB  
Review
Accelerated Carbonation of Waste Incineration Residues: Reactor Design and Process Layout from Laboratory to Field Scales—A Review
by Quentin Wehrung, Davide Bernasconi, Fabien Michel, Enrico Destefanis, Caterina Caviglia, Nadia Curetti, Meissem Mezni, Alessandro Pavese and Linda Pastero
Clean Technol. 2025, 7(3), 58; https://doi.org/10.3390/cleantechnol7030058 - 11 Jul 2025
Viewed by 1627
Abstract
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching [...] Read more.
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching potential and hazardous properties. While these residues contain valuable metals and reactive mineral phases suitable for carbonation or alkaline activation, chemical, techno-economic, and policy barriers have hindered the implementation of sustainable, full-scale management solutions. Accelerated carbonation technology (ACT) offers a promising approach to simultaneously sequester CO2 and enhance residue stability. This review provides a comprehensive assessment of waste incineration residue carbonation, covering 227 documents ranging from laboratory studies to field applications. The analysis examines reactor designs and process layouts, with a detailed classification based on material characteristics, operating conditions, investigated parameters, and the resulting pollutant stabilization, CO2 uptake, or product performance. In conclusion, carbonation-based approaches must be seamlessly integrated into broader waste management strategies, including metal recovery and material repurposing. Carbonation should be recognized not only as a CO2 sequestration process, but also as a binding and stabilization strategy. The most critical barrier remains chemical: the persistent leaching of sulfates, chromium(VI), and antimony(V). We highlight what we refer to as the antimony problem, as this element can become mobilized by up to three orders of magnitude in leachate concentrations. The most pressing research gap hindering industrial deployment is the need to design stabilization approaches specifically tailored to critical anionic species, particularly Sb(V), Cr(VI), and SO42−. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

16 pages, 2609 KiB  
Article
Comparative Life Cycle and Techno-Economic Assessment of Constructed Wetland, Microbial Fuel Cell, and Their Integration for Wastewater Treatment
by Nicholas Miwornunyuie, Samuel O. Alamu, Guozhu Mao, Nihed Benani, James Hunter and Gbekeloluwa Oguntimein
Clean Technol. 2025, 7(3), 57; https://doi.org/10.3390/cleantechnol7030057 - 10 Jul 2025
Viewed by 635
Abstract
This study systematically compares the environmental and economic performance of three wastewater treatment systems: constructed wetlands (CWs), microbial fuel cells (MFCs), and their integration (CW–MFC). Lab-scale units of each system were constructed using a multi-media matrix (gravel, zeolite, and granular activated carbon), composite [...] Read more.
This study systematically compares the environmental and economic performance of three wastewater treatment systems: constructed wetlands (CWs), microbial fuel cells (MFCs), and their integration (CW–MFC). Lab-scale units of each system were constructed using a multi-media matrix (gravel, zeolite, and granular activated carbon), composite native wetland species (Juncus effusus, Iris sp., and Typha angustifolia), carbon-based electrodes (graphite), and standard inoculum for CW and CW–MFC. The MFC system employed carbon-based electrodes and proton-exchange membrane. The experimental design included a parallel operation of all systems treating domestic wastewater under identical hydraulic and organic loading rates. Environmental impacts were quantified across construction and operational phases using life cycle assessment (LCA) with GaBi software 9.2, employing TRACI 2021 and ReCiPe 2016 methods, while techno-economic analysis (TEA) evaluated capital and operational costs. The key results indicate that CW demonstrates the lowest global warming potential (142.26 kg CO2-eq) due to its reliance on natural biological processes. The integrated CW–MFC system achieved enhanced pollutant removal (82.8%, 87.13%, 78.13%, and 90.3% for COD, NO3, TN, and TP) and bioenergy generation of 2.68 kWh, balancing environmental benefits with superior treatment efficiency. In contrast, the stand-alone MFC shows higher environmental burdens, primarily due to energy-intensive material requirements and fabrication processes. TEA results highlight CW as the most cost-effective solution (USD 627/m3), with CW–MFC emerging as a competitive alternative when considering environmental benefits and operational efficiencies (USD 718/m3). This study highlights the potential of hybrid systems, such as CW–MFC, to advance sustainable wastewater treatment technologies by minimizing environmental impacts and enhancing resource recovery, supporting their broader adoption in future water management strategies. Future research should focus on optimizing materials and energy use to improve scalability and feasibility. Full article
(This article belongs to the Collection Water and Wastewater Treatment Technologies)
Show Figures

Figure 1

27 pages, 1431 KiB  
Article
Environmental and Behavioral Dimensions of Private Autonomous Vehicles in Sustainable Urban Mobility
by Iulia Ioana Mircea, Eugen Rosca, Ciprian Sorin Vlad and Larisa Ivascu
Clean Technol. 2025, 7(3), 56; https://doi.org/10.3390/cleantechnol7030056 - 7 Jul 2025
Viewed by 614
Abstract
In the current context, where environmental concerns are gaining increased attention, the transition toward sustainable urban mobility stands out as a necessary and responsible step. Technological advancements over the past decade have brought private autonomous vehicles, particularly those defined by the Society of [...] Read more.
In the current context, where environmental concerns are gaining increased attention, the transition toward sustainable urban mobility stands out as a necessary and responsible step. Technological advancements over the past decade have brought private autonomous vehicles, particularly those defined by the Society of Automotive Engineers Levels 4 and 5, into focus as promising solutions for mitigating road congestion and reducing greenhouse gas emissions. However, the extent to which Autonomous Vehicles can fulfill this potential depends largely on user acceptance, patterns of use, and their integration within broader green energy and sustainability policies. The present paper aims to develop an integrated conceptual model that links behavioral determinants to environmental outcomes, assessing how individuals’ intention to adopt private autonomous vehicles can contribute to sustainable urban mobility. The model integrates five psychosocial determinants—perceived usefulness, trust in technology, social influence, environmental concern, and perceived behavioral control—with contextual variables such as energy source, infrastructure availability, and public policy. These components interact to predict users’ intention to adopt AVs and their perceived contribution to urban sustainability. Methodologically, the study builds on a narrative synthesis of the literature and proposes a framework applicable to empirical validation through structural equation modeling (SEM). The model draws on established frameworks such as Technology Acceptance Model (TAM), Theory of Planned Behavior, and Unified Theory of Acceptance and Use of Technology, incorporating constructs including perceived usefulness, trust in technology, social influence, environmental concern, and perceived behavioral control, constructs later to be examined in relation to key contextual variables, including the energy source powering Autonomous Vehicles—such as electricity from mixed or renewable grids, hydrogen, or hybrid systems—and the broader policy environment (regulatory frameworks, infrastructure investment, fiscal incentives, and alignment with climate and mobility strategies and others). The research provides relevant directions for public policy and behavioral interventions in support of the development of clean and smart urban transport in the age of automation. Full article
Show Figures

Figure 1

20 pages, 9651 KiB  
Article
Recovery of Vegetable Fibers from Licorice Processing Waste and a Case Study for Their Use in Green Building Products
by Luigi Madeo, Anastasia Macario, Sebastiano Candamano and Pierantonio De Luca
Clean Technol. 2025, 7(3), 55; https://doi.org/10.3390/cleantechnol7030055 - 7 Jul 2025
Viewed by 485
Abstract
The present research is aimed at the recovery of vegetable fibers from licorice root processing waste through simple methods that do not involve the use of chemical reagents to guarantee a complete eco-sustainability approach and for their use in the production of fiber-reinforced [...] Read more.
The present research is aimed at the recovery of vegetable fibers from licorice root processing waste through simple methods that do not involve the use of chemical reagents to guarantee a complete eco-sustainability approach and for their use in the production of fiber-reinforced ecomaterials. The waste was treated through several washing cycles with only water at different temperatures to identify the optimal conditions to obtain clean fibers. The clean fibers and the waste were analyzed and characterized in advance by scanning electron microscopy (SEM), microanalysis (EDS) and thermal analysis (DSC). Subsequently, both the clean fibers and the waste were used to produce fiber-reinforced plaster artifacts. The mechanical properties of the artifacts were measured as a function of % clean fibers or untreated waste. The results obtained showed that it is possible to effectively recover clean vegetable fibers from licorice waste through repeated washing cycles of 30 min with only water. By increasing the temperature, the necessary washing cycles decrease, and a good compromise is five washes at 100 °C. The yield of clean fibers compared to waste is 50%. The creation of prototypes of gypsum matrix panels, which incorporate fibers recovered from licorice processing waste through the methodology tested in this study, has also been successfully realized, representing a significant step forward towards practical applications in the field of eco-friendly construction. Full article
Show Figures

Graphical abstract

15 pages, 2650 KiB  
Article
The Impact of Tetraethyl Pyrophosphate (TEPP) Pesticide on the Development and Behavior of Danio rerio: Evaluating the Potential of Cork Granules as a Natural Adsorbent for TEPP Removal from Aqueous Environments
by Fernanda Blini Marengo Malheiros, Lorrainy Victoria Rodrigues de Souza, Angélica Gois Morales, Eduardo Festozo Vicente, Paulo C. Meletti and Carlos Alberto-Silva
Clean Technol. 2025, 7(3), 54; https://doi.org/10.3390/cleantechnol7030054 - 28 Jun 2025
Viewed by 482
Abstract
Toxicological studies of pesticides in animal models provide critical insights into their mechanisms of action, while adsorption strategies offer potential solutions for decontaminating polluted waters. We evaluated toxicity induced by tetraethyl pyrophosphate (TEPP), an organophosphate pesticide and AChE inhibitor, on zebrafish (Danio [...] Read more.
Toxicological studies of pesticides in animal models provide critical insights into their mechanisms of action, while adsorption strategies offer potential solutions for decontaminating polluted waters. We evaluated toxicity induced by tetraethyl pyrophosphate (TEPP), an organophosphate pesticide and AChE inhibitor, on zebrafish (Danio rerio) development and behavior, alongside the efficacy of wine cork granules as a natural adsorbent. TEPP exposure reduced embryo viability following an inverted U-shaped dose–response curve, suggesting non-monotonic neurodevelopmental effects, but did not alter developmental timing or morphology in survivors. In juveniles, TEPP increased preference for dark environments (33% vs. controls) and enhanced swimming endurance approximately 3-fold, indicating disrupted phototaxis and stress responses. Most strikingly, water treated with cork granules retained toxicity, increasing mortality, delaying embryogenesis, and altering behavior. This directly contradicts in vitro adsorption studies that suggested cork’s efficacy. These results demonstrate the high sensitivity of zebrafish to TEPP at nanomolar concentrations, which contrasts with in vitro models that require doses approximately 1000 times higher. Our findings not only highlight TEPP’s ecological risks but also reveal unexpected limitations of cork granules for environmental remediation, urging caution in their application. Full article
(This article belongs to the Special Issue Pollutant Removal from Aqueous Solutions by Adsorptive Biomaterials)
Show Figures

Figure 1

23 pages, 3474 KiB  
Article
Performance of Ventilation, Filtration, and Upper-Room UVGI in Mitigating PM2.5 and SARS-CoV-2 Levels
by Atefeh Abbaspour, Hamidreza Seraj, Ali Bahadori-Jahromi and Alan Janbey
Clean Technol. 2025, 7(3), 53; https://doi.org/10.3390/cleantechnol7030053 - 23 Jun 2025
Viewed by 803
Abstract
This study aimed to improve indoor air quality (IAQ) in an existing college building in London by addressing two key pollutants: PM2.5 particles (from indoor and outdoor sources) and SARS-CoV-2 as a biological contaminant. Various mitigation strategies were assessed, including hybrid ventilation [...] Read more.
This study aimed to improve indoor air quality (IAQ) in an existing college building in London by addressing two key pollutants: PM2.5 particles (from indoor and outdoor sources) and SARS-CoV-2 as a biological contaminant. Various mitigation strategies were assessed, including hybrid ventilation that combined CIBSE-recommended rates with partial window and door opening. The effectiveness of HEPA-based air purifiers (APs) and upper-room ultraviolet germicidal irradiation (UVGI) systems with different intensities was also evaluated for reducing viral transmission and the basic reproduction number (R0). To manage PM2.5 in the kitchen, HEPA and in-duct MERV13 filters were integrated into the ventilation system. Results showed that hybrid ventilation outperformed mechanical systems by achieving greater reductions in infection probability (PI) and maintained higher performance as the number of infectors increased, showing only a 2.5–16% drop, compared to 35% with mechanical ventilation. An R0 analysis indicated that UVGI is more suitable in high-risk settings, while APs combined with hybrid ventilation are effective in lower-risk scenarios. The findings also emphasize that combining Supply–Exhaust ventilation with APs or MERV13 filters is crucial for maintaining safe IAQ in kitchens, aligning with the WHO’s short- and long-term exposure limits. Full article
Show Figures

Figure 1

37 pages, 11435 KiB  
Article
Hybrid Energy-Powered Electrochemical Direct Ocean Capture Model
by James Salvador Niffenegger, Kaitlin Brunik, Todd Deutsch, Michael Lawson and Robert Thresher
Clean Technol. 2025, 7(3), 52; https://doi.org/10.3390/cleantechnol7030052 - 23 Jun 2025
Viewed by 521
Abstract
Offshore synthetic fuel production and marine carbon dioxide removal can be enabled by direct ocean capture, which extracts carbon dioxide from the ocean that then can be used as a feedstock for fuel production or sequestered underground. To maximize carbon capture, plants require [...] Read more.
Offshore synthetic fuel production and marine carbon dioxide removal can be enabled by direct ocean capture, which extracts carbon dioxide from the ocean that then can be used as a feedstock for fuel production or sequestered underground. To maximize carbon capture, plants require a variety of low-carbon energy sources to operate, such as variable renewable energy. However, the impacts of variable power on direct ocean capture have not yet been thoroughly investigated. To facilitate future deployments, a generalizable model for electrodialysis-based direct ocean capture plants is created to evaluate plant performance and electricity costs under intermittent power availability. This open-source Python-based model captures key aspects of the electrochemistry, ocean chemistry, post-processing, and operation scenarios under various conditions. To incorporate realistic energy supply dynamics and cost estimates, the model is coupled with the National Renewable Energy Laboratory’s H2Integrate tool, which simulates hybrid energy system performance profiles and costs. This integrated framework is designed to provide system-level insights while maintaining computational efficiency and flexibility for scenario exploration. Initial evaluations show similar results to those predicted by the industry, and demonstrate how a given plant could function with variable power in different deployment locations, such as with wind energy off the coast of Texas and with wind and wave energy off the coast of Oregon. The results suggest that electrochemical systems with greater tolerances for power variability and low minimum power requirements may offer operational advantages in variable-energy contexts. However, further research is needed to quantify these benefits and evaluate their implications across different deployment scenarios. Full article
(This article belongs to the Topic CO2 Capture and Renewable Energy, 2nd Edition)
Show Figures

Figure 1

25 pages, 3287 KiB  
Article
Evaluation of Properties and Bioactivity of Silver (Ag) Nanoparticles (NPs) Fabricated Using Nixtamalization Wastewater (Nejayote)
by Alejandra Ortiz-De Lira, J. A. Lozano-Álvarez, N. A. Chávez-Vela, C. E. Escárcega-González, Enrique D. Barriga-Castro, Hilda E. Reynel-Ávila and Iliana E. Medina-Ramírez
Clean Technol. 2025, 7(3), 51; https://doi.org/10.3390/cleantechnol7030051 - 20 Jun 2025
Viewed by 682
Abstract
Nejayote (Nej), an effluent from nixtamalization process, has an alkaline pH and contains a high load of organic matter in suspension and dissolution, which makes it a highly polluting waste when discharged directly into the environment. However, the sustainable reuse of this effluent [...] Read more.
Nejayote (Nej), an effluent from nixtamalization process, has an alkaline pH and contains a high load of organic matter in suspension and dissolution, which makes it a highly polluting waste when discharged directly into the environment. However, the sustainable reuse of this effluent is relevant since it contains high-value compounds (ferulic acid (FA)) with appropriate activity for the ecological synthesis of silver nanoparticles (AgNPs). This study explores the synthesis of AgNPs using Nej as a reducing and stabilizing agent and evaluates the antibacterial effectiveness of AgNPs against Escherichia coli (E. coli). The AgNPs under study possess excellent optical (UV-Vis) and structural properties (XRD). HR-TEM images show predominantly spherical particles, with an average size of 20 nm. FTIR spectroscopy identified functional groups, including phenols and flavonoids, on the nanoparticle surface, acting as stabilizing agents. HPLC supports the existence of FA in the AgNPs. Biogenic AgNPs exhibit enhanced antibacterial activity due to the adsorption of these functional groups onto their surface, which contributes to bacterial membrane disruption. Finally, no hemolytic or cytotoxic activity was observed, suggesting that the AgNPs exert antimicrobial activity without potentially harmful doses (biocompatibility). The study highlights the potential of Nej as a sustainable source for use in nanoparticle synthesis, promoting the recycling of agro-industrial waste and the production of materials with technological applications. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop