Sorption Behavior of Nickel(II) on Natural and Fe(III)-Modified Clinoptilolite: Optimization and Mechanism Insight
Abstract
1. Introduction
2. Materials and Methods
2.1. Zeolite Preparation
2.2. Batch Sorption Experiments
2.2.1. Influence of pH
2.2.2. Influence of Solid/Liquid Ratio
2.2.3. Influence of Contact Time
2.2.4. Influence of Initial Concentration
2.3. Leaching Experiments
2.4. Calculation of Sorption Parameters
3. Results and Discussion
3.1. Optimization of Sorption Parameters
3.1.1. pH Optimization
3.1.2. Solid/Liquid Ratio Optimization
3.1.3. Contact Time Optimization
Identification of the Kinetic Rate-Controlling Step
3.1.4. Concentration Range Optimization
3.2. Leaching Characteristics of Nickel-Saturated Zeolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAS | Atomic Absorption Spectrophotometer |
BET | Brunauer, Emmett, and Teller method for surface area determination |
FeZ | Fe(III)-modified natural zeolite |
FeZNi | Nickel-saturated Fe(III)-modified natural zeolite |
FTIR | Fourier transform infrared spectroscopy |
NZ | Natural zeolite |
NZNI | Nickel-saturated natural zeolite |
PFO | Pseudo-first order kinetic model |
PSO | Pseudo-second order kinetic model |
RC | Relative coefficient (%) |
RF | Proportion of Hg(II) sorbed in rapid step (%) |
RMSE | Root mean square error |
SEM/EDS | Scanning electron microscopy with energy dispersive X-ray spectroscopy |
SF | Proportion of Hg(II) sorbed in slow step (%) |
S/L | Solid/liquid ratio |
TG/DTG | Thermogravimetry with derivative thermogravimetry |
XRPD | X-ray powder diffraction |
References
- Shahzad, B.; Tanveer, M.; Rehman, A.; Cheema, S.A.; Fahad, S.; Rehman, S.; Sharma, A. Nickel; whether toxic or essential for plants and environment—A review. Plant Physiol. Biochem. 2018, 132, 641–651. [Google Scholar] [CrossRef]
- Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Adv. 2022, 12, 9139–9153. [Google Scholar] [CrossRef]
- Hassan, M.U.; Chattha, M.U.; Khan, I.; Chattha, M.B.; Aamer, M.; Nawaz, M.; Ali, A.; Khan, M.A.U.; Khan, T.A. Nickel toxicity in plants: Reasons, toxic effects, tolerance mechanisms, and remediation possibilities—A review. Environ. Sci. Pollut. Res. 2019, 26, 12673–12688. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.I.; Ahmad, K.; Ahmad, T.; Zafar, A.; Alrefaei, A.F.; Ashfaq, A.; Akhtar, S.; Mahpara, S.; Mehmood, N.; Ugulu, I. Evaluation of nickel toxicity and potential health implications of agriculturally diversely irrigated wheat crop varieties. Arab. J. Chem. 2023, 16, 104934. [Google Scholar] [CrossRef]
- Mustafa, A.; Zulfiqar, U.; Mumtaz, M.Z.; Radziemska, M.; Haider, F.U.; Holatko, J.; Hammershmiedt, T.; Naveed, M.; Ali, H.; Kintl, A.; et al. Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. Chemosphere 2023, 328, 138574. [Google Scholar] [CrossRef]
- Denkhaus, E.; Salnikow, K. Nickel essentiality, toxicity, and carcinogenicity. Crit. Rev. Oncol. Hematol. 2002, 42, 35–56. [Google Scholar] [CrossRef]
- Cempel, M.; Nikel, G. Nickel: A Review of Its Sources and Environmental Toxicology. Pol. J. Environ. Stud. 2006, 15, 375–382. [Google Scholar]
- Kumar, A.; Jigyasu, D.K.; Kumar, A.; Subrahmanyam, G.; Mondal, R.; Shabnam, A.A.; Cabral-Pinto, M.M.S.; Malyan, S.K.; Chaturvedi, A.K.; Kumar Gupta, D.; et al. Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches. Chemosphere 2021, 275, 129996. [Google Scholar] [CrossRef]
- LePan, N. All the World’ s Metals and Minerals in One Visualization. Visual Capitalist, Vancouver, WA, USA, 2020. Available online: https://www.visualcapitalist.com/all-the-worlds-metals-and-minerals-in-one-visualization/ (accessed on 30 June 2025).
- Duda-Chodak, A.; Błaszczyk, U. The impact of nickel on human health. J. Elementol. 2008, 13, 685–696. [Google Scholar]
- Lock, K.; Van Eeckhout, H.; De Schamphelaere, K.A.C.; Criel, P.; Janssen, C.R. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare). Chemosphere 2007, 66, 1346–1352. [Google Scholar] [CrossRef] [PubMed]
- Picarelli, A.; Greco, N.; Sciuttini, F.; Marini, C.; Meacci, A. High consumption of Nickel-containing foods and IBS-like disorders: Late events in a gluten-free diet. Ecotoxicol. Environ. Saf. 2021, 222, 112492. [Google Scholar] [CrossRef]
- Das, K.K.; Reddy, R.C.; Bagoji, I.B.; Das, S.; Bagali, S.; Mullur, L.; Khodnapur, J.P.; Biradar, M.S. Primary concept of nickel toxicity—An overview. J. Basic Clin. Physiol. Pharmacol. 2019, 30, 141–152. [Google Scholar] [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef]
- Buxton, S.; Garman, E.; Heim, K.E.; Lyons-Darden, T.; Schlekat, C.E.; Taylor, M.D.; Oller, A.R. Concise Review of Nickel Human Health Toxicology and Ecotoxicology. Inorganics 2019, 7, 89. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Brocato, J.; Laulicht, F.; Costa, M. Mechanisms of nickel carcinogenesis. In Essential and Non-Essential Metals. Molecular and Integrative Toxicology; Mudipalli, A., Zelikoff, J.T., Eds.; Springer International Publishing AG: New York, NY, USA, 2017; pp. 181–197. [Google Scholar]
- European Chemicals Agency (ECHA). Classification, Labelling and Packaging. In Table of Harmonized Entries in Annex VI to CLP.; European Chemicals Agency: Helsinki, Finland, 2018. [Google Scholar]
- International Agency for Research on Cancer (IARC). Nickel and nickel compounds. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer (IARC): Lyon, France, 2012; Volume 100C, pp. 169–218. [Google Scholar]
- World Health Organization; United Nations Children’s Fund (UNICEF). Progress on Sanitation and Drinking Water: 2014 Update; World Health Organization: Geneva, Switzerland, 2014; Available online: https://iris.who.int/handle/10665/112727 (accessed on 30 June 2025).
- United Nations. The UN Sustainable Development Goals. United Nations, New York, 2015. Available online: http://www.un.org/sustainabledevelopment/summit/ (accessed on 30 June 2025).
- Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/i/item/9789240045064 (accessed on 30 June 2025).
- NN 64/2023, Croatian Regulation on the Health Safety of Drinking Water. 2023. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2023_06_64_1057.html (accessed on 30 June 2025).
- Kumar, V.; Dwivedi, S.K. A review on accessible techniques for removal of hexavalent Chromium and divalent Nickel from industrial wastewater: Recent research and future outlook. J. Clean. Prod. 2021, 295, 126229. [Google Scholar] [CrossRef]
- Khobragade, M.U.; Nayak, A.K.; Pal, A. A Review on the Removal Technologies of Nickel(II) Ion from Aqueous Solution. Recent Pat. Eng. 2017, 11, 21–34. [Google Scholar] [CrossRef]
- Croatian Regulation on Wastewater Emission Limit Values. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2020_03_26_622.html (accessed on 30 June 2025).
- Noman, E.; Al-Gheethi, A.; Mohamed, R.M.S.R.; Al-Sahari, M.; Hossain, M.S.; Vo Dai-Viet, N.; Naushad, M. Sustainable approaches for nickel removal from wastewater using bacterial biomass and nanocomposite adsorbents: A review. Chemosphere 2002, 291, 132862. [Google Scholar] [CrossRef]
- Costa, J.M.; dos Reis da Costa, J.G.; de Almeida Neto, A.F. Techniques of nickel(II) removal from electroplating industry wastewater: Overview and trends. J. Water Process Eng. 2022, 46, 102593. [Google Scholar] [CrossRef]
- Vakili, M.; Rafatullah, M.; Yuan, J.; Zwain, H.M.; Mojiri, A.; Gholami, Z.; Gholami, F.; Wang, W.; Giwa, A.S.; Yu, Y.; et al. Nickel ion removal from aqueous solutions through the adsorption process: A review. Rev. Chem. Eng. 2021, 37, 755–778. [Google Scholar] [CrossRef]
- Kumar, A.; Balouch, A.; Pathan, A.A.; Abdullah; Jagirani, M.S.; Mahar, A.M.; Zubair, M.; Laghari, B. Remediation of Nickel ion from wastewater by applying various techniques: A review. Acta Chem. Malays. 2019, 3, 1–15. [Google Scholar] [CrossRef]
- Kruszelnicka, I.; Ginter-Kramarczyk, D.; Góra, W.; Staszak, K.; Baraniak, M.; Lota, G.; Regel-Rosocka, M. Removal of nickel(II) from industrial wastewater using selected methods: A review. Chem. Process Eng. 2022, 43, 437–448. [Google Scholar] [CrossRef]
- Nthwane, Y.B.; Fouda-Mbanga, B.G.; Thwala, M.; Pillay, K. A comprehensive review of heavy metals (Pb2+, Cd2+, Ni2+) removal from wastewater using low-cost adsorbents and possible revalorisation of spent adsorbents in blood fingerprint application. Environ. Technol. 2025, 46, 414–430. [Google Scholar] [CrossRef]
- Goel, S.; Kaur, P. A review on biological sorbents for nickel removal from wastewater. Int. J. Res. Anal. Rev. 2018, 5, 468–472. [Google Scholar]
- Lech, M.; Gala, O.; Helińska, K.; Kołodzińska, K.; Konczak, H.; Mroczyński, Ł.; Siarka, E. Membrane Separation in the Nickel-Contaminated Wastewater Treatment. Waste 2023, 1, 482–496. [Google Scholar] [CrossRef]
- Mahtab, M.A.; Bari, A.; Khan, S.; Ahteshaam, M.; Khan, S.U.; Farooqi, I.H. Nickel (II) removal from real electroplating wastewater in an electrocoagulation reactor: Parametric optimization by response surface methodology. Water Sci. Technol. 2024, 90, 2266–2275. [Google Scholar] [CrossRef]
- Shaker, O.A.; Safwat, S.M.; Matta, M.E. Nickel removal from wastewater using electrocoagulation process with zinc electrodes under various operating conditions: Performance investigation, mechanism exploration, and cost analysis. Environ. Sci. Pollut. Res. 2023, 30, 26650–26662. [Google Scholar] [CrossRef] [PubMed]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Bahmanzadegan, F.; Ghaemi, A. A comprehensive review on novel zeolite-based adsorbents for environmental pollutant. J. Hazard. Mater. Adv. 2025, 17, 100617. [Google Scholar] [CrossRef]
- Nizam, M.K.; Azhari, S.; Jaya, M.A.B.T. Modified Zeolite as Purification Material in Wastewater Treatment: A Review. Sci. Res. J. 2021, 18, 177–213. [Google Scholar] [CrossRef]
- Fernandes de Magalhães, L.; Rodrigues da Silva, G.; Clark Peres, A.E. Zeolite Application in Wastewater Treatment. Adsorpt. Sci. Technol. 2022, 2022, 4544104. [Google Scholar] [CrossRef]
- Islam, M.A.; Awual, M.R.; Angove, M.J. A review on nickel(II) adsorption in single and binary component systems and future path. J. Environ. Chem. Eng. 2019, 7, 103305. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, X.; Yi, H.; Yu, Q.; Zhang, Y.; Wei, J.; Yuan, Y. Synthesis, characterization and application of Fe-zeolite: A review. Appl. Cat. A-Gen. 2022, 630, 118467. [Google Scholar] [CrossRef]
- Raval, N.P.; Shah, P.U.; Shah, N.K. Adsorptive removal of nickel(II) ions from aqueous environment: A review. J. Environ. Manag. 2016, 179, 1–20. [Google Scholar] [CrossRef]
- Charazińska, S.; Burszta-Adamiak, E.; Lochyński, P. Recent trends in Ni(II) sorption from aqueous solutions using natural materials. Rev. Environ. Sci. Bio/Technol. 2022, 21, 105–138. [Google Scholar] [CrossRef]
- Regina, M.Y.; Saraswathy, S.; Kamal, B.; Karthik, V.; Muthukumaran, K. Removal of nickel (II) ions from waste water using low cost adsorbents: A review. J. Chem. Pharm. Sci. 2015, 8, 1–6. [Google Scholar]
- Meena, R.S.; Sreevelan, M.; Saravanan, G.; Wilsha, R.W.; Hemamalini, C.G. Removal of Nickel from Industrial Wastewater Using Natural Adsorbents: A Review. IJSART 2018, 4, 1599–1603. [Google Scholar]
- Tasić, Ž.Z.; Bogdanović, G.D.; Antonijević, M.M. application of natural zeolite in wastewater treatment—A review. J. Min. Metall. Sect. A-Min. 2019, 55, 67–79. [Google Scholar] [CrossRef]
- Mudaber, S.; Noori, B.; Batur, J. Zeolites as Effective Adsorbents for Heavy Metal Removal in Wastewater Treatment of Kabul City—A Review. IAR J. Eng. Technol. 2023, 4, 1–10. [Google Scholar]
- Sodha, V.; Shahabuddin, S.; Gaur, R.; Ahmad, I.; Bandyopadhyay, R.; Sridewi, N. Comprehensive Review on Zeolite-Based Nanocomposites for Treatment of Effluents from Wastewater. Nanomaterials 2022, 12, 3199. [Google Scholar] [CrossRef] [PubMed]
- Malamis, S.; Katsou, E. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 2013, 252–253, 428–461. [Google Scholar] [CrossRef] [PubMed]
- Panayotova, M. Kinetics and thermodynamics of removal of nickel ions from wastewater by use of natural and modified zeolite. Fresenius Environ. Bull. 2001, 10, 267–272. [Google Scholar]
- Alvarez-Ayuso, E.; Garcıa-Sánchez, A.; Querol, X. Purification of metal electroplating waste waters using zeolites. Water Res. 2003, 37, 4855–4862. [Google Scholar] [CrossRef]
- Dal Bosco, S.M.; Jimenez, R.S.; Carvalho, W.A. Removal of toxic metals from wastewater by Brazilian natural scolecite. J. Colloid Interface Sci. 2005, 281, 424–431. [Google Scholar] [CrossRef]
- Sprynskyy, M.; Buszewski, B.; Terzyk, A.P.; Namieśnik, J. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J. Colloid Interface Sci. 2006, 304, 21–28. [Google Scholar] [CrossRef]
- Argun, M.E. Use of clinoptilolite for the removal of nickel ions from water: Kinetics and thermodynamics. J. Hazard. Mater. 2008, 150, 587–595. [Google Scholar] [CrossRef]
- Al Dwairi, R.A.; Al-Rawajfeh, A.E. Removal of cobalt and nickel from wastewater by using Jordan low-cost zeolite and bentonite. J. Chem. Technol. Metall. 2012, 47, 69–76. [Google Scholar]
- Salman, H.; Shaheen, H.; Abbas, G.; Khalouf, N. Use of Syrian natural zeolite for heavy metals removal from industrial waste water: Factors and mechanism. J. Entomol. Zool. Stud. 2017, 5, 452–461. [Google Scholar]
- El-Azim, H.A.; Mourad, F.A. Removal of Heavy Metals Cd (II), Fe (III) and Ni (II), from Aqueous Solutions by Natural (Clinoptilolite) Zeolites and Application to Industrial Wastewater. Asian J. Environ. Ecol. 2018, 7, 1–13. [Google Scholar] [CrossRef]
- Sokić, K.; Dikić, J.; Veljović, Ð.; Jelić, I.; Radovanović, D.; Štulović, M.; Jevtić, S. Preparation and Characterization of Hydroxyapatite-Modified Natural Zeolite: Application as Adsorbent for Ni2+ and Cr3+ Ion Removal from Aqueous Solutions. Processes 2025, 13, 818. [Google Scholar] [CrossRef]
- Tekin, B.; Açikel, Ü. Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: A study in mono- and dicomponent systems. Turk. J. Chem. 2022, 46, 1042–1054. [Google Scholar] [CrossRef]
- Parades-Aguilar, J.; Reyes-Martínez, V.; Bustamante, G.; Almendáriz-Tapia, F.J.; Martínez-Meza, G.; Vílchez-Vargas, R.; Link, A.; Certucha-Barragán, M.T.; Calderón, K. Removal of nickel(II) from wastewater using a zeolite-packed anaerobic bioreactor: Bacterial diversity and community structure shifts. J. Environ. Manag. 2021, 279, 111558. [Google Scholar] [CrossRef]
- Al-Abbad, E.A.; Al Dwairi, R.A. Removal of nickel (II) ions from water by Jordan natural zeolite as sorbent material. J. Saudi Chem. Soc. 2021, 25, 101233. [Google Scholar] [CrossRef]
- Hosseini, S.S.S.; Khosravi, A.; Tavakoli, H.; Esmhosseini, M.; Khezri, S. Natural zeolite for nickel ions removal from aqueous solutions: Optimization and modeling using response surface methodology based on central composite design. Desalin. Water Treat. 2016, 57, 16898–16906. [Google Scholar] [CrossRef]
- Olad, A.; Ahmadi, S.; Rashidzadeh, A. Removal of Nickel (II) from aqueous solutions with polypyrrole modified clinoptilolite: Kinetic and isotherm studies. Desalin. Water Treat. 2013, 51, 7172–7180. [Google Scholar] [CrossRef]
- Kocaoba, S.; Orhan, Y.; Akyüz, T. Kinetics and equilibrium studies of heavy metal ions removal by use of natural zeolite. Desalination 2007, 214, 1–10. [Google Scholar] [CrossRef]
- Ismail, M.H.S.; Zhang, X.T.; Adnan, S.N. Application of clinotptilolite in removal of nickel(II) in plating wastewater. World Appl. Sci. J. 2012, 18, 659–664. [Google Scholar]
- Merrikhpour, H.; Jalali, M. Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Technol. Environ. Policy 2013, 15, 303–316. [Google Scholar] [CrossRef]
- Al-Haj Ali, A.; El-Bishtawi, R. Removal of Lead and Nickel Ions Using Zeolite Tuff. J. Chem. Technol. Biotechnol. 1997, 69, 27–34. [Google Scholar] [CrossRef]
- Çoruh, S.; Ergun, O.N. Ni2+ removal from aqueous solutions using conditioned clinoptilolites: Kinetic and isotherm studies. Environ. Prog. Sustain. Energy 2009, 28, 162–172. [Google Scholar] [CrossRef]
- Rajic, N.; Stojakovic, D.; Jovanovic, M.; Zabukovec Logar, N.; Mazaj, M.; Kaucic, V. Removal of nickel(II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite. App. Surf. Sci. 2010, 257, 1524–1532. [Google Scholar] [CrossRef]
- Abatal, M.; Olguin, M.T.; Abdellaoui, Y.; El Bouari, A. Sorption of Cd (II), Ni (II) and Zn (II) on natural, sodium-, and acid-modified clinoptilolite-rich tuff. Environ. Prot. Eng. 2018, 44, 41–59. [Google Scholar] [CrossRef]
- Mehdi, B.; Belkacemi, H.; Brahmi-Ingrachen, D.; Braham, L.A.; Muhr, L. Study of nickel adsorption on NaCl-modified natural zeolite using response surface methodology and kinetics modelling. Groundw. Sustain. Dev. 2022, 17, 100757. [Google Scholar] [CrossRef]
- Biblioteca, I.; Sambucci, M.; Valente, M. Zeolite-Clinoptilolite conditioning for improved heavy metals ions removal: A preliminary assessment. Ceram. Int. 2023, 49, 39649–39656. [Google Scholar] [CrossRef]
- Al-Ghazawi, Z.; Qasaimeh, A.; Al-Bataina, B. Investigation of nickel adsorption onto low Jordanian zeolite dose: Efficiency and Langmuir—Freundlich behaviour. J. Water Land Dev. 2021, 50, 150–157. [Google Scholar] [CrossRef]
- Kuldeyev, E.; Seitzhanova, M.; Tanirbergenova, S.; Tazhu, K.; Doszhanov, E.; Mansurov, Z.; Azat, S.; Nurlybaev, R.; Berndtsson, R. Modifying Natural Zeolites to Improve Heavy Metal Adsorption. Water 2023, 15, 2215. [Google Scholar] [CrossRef]
- Sirotiak, M.; Lipovský, M.; Bartošová, A. Sorption kinetics of selected heavy metals adsorption to natural and Fe(III) modified zeolite tuff containing clinoptilolite mineral. Res. Pap. MTF STU 2015, 23, 41–47. [Google Scholar] [CrossRef]
- DIN 66165-2; Particle Size Analysis-Sieving Analysis-Part 2: Procedure. Deutsches Institut für Normung: Berlin, Germany, 2016.
- Ugrina, M.; Vukojević Medvidović, N.; Daković, A. Characterization and environmental application of iron-modified zeolite from the Zlatokop deposit. Desalin. Water Treat. 2015, 53, 3557–3569. [Google Scholar] [CrossRef]
- Voinovitch, I.; Debrad-Guedon, J.; Louvrier, J. The Analysis of Silicates; Israel Program for Scientific Translations: Jerusalem, Israel, 1966; pp. 127–129. [Google Scholar]
- DIN 38414 S4; German Standard Procedure for Water, Wastewater and Sediment Testing–Sludge and Sediment. Determination of Leachability; Institut für Normung: Berlin, Germany, 1984.
- Barnum, D.W. Hydrolysis of Cations. Formation Constants and Standard Free Energies of Formation of Hydroxy Complexes. Inorg. Chem. 1983, 22, 2297–2305. [Google Scholar] [CrossRef]
- Minceva, M.; Fajagar, R.; Markovska, L.; Meshko, V. Comparative study of Zn2+, Cd2+, and Pb2+ removal from water solution using natural clinoptilolitic zeolite and commercial granulated activated carbon. Equilibrium and adsorption. Sep. Sci. Technol. 2008, 43, 2117–2143. [Google Scholar] [CrossRef]
- Speight, J.G. Lange’s Handbook of Chemistry, 16th ed.; McGraw-Hill, Inc.: New York, NY, USA, 2005; p. 1338. [Google Scholar]
- Kumar, D.; Gaur, J.P. Chemical reaction- and particle diffusion-based kinetic modeling of metal biosorption by a phormidium sp.-dominated cyanobacterial mat. Bioresour. Technol. 2011, 102, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Elovich, S.Y.; Larinov, O.G. Theory of adsorption from solutions of non-electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions. Izv. Akad. Nauk. SSSR Otd. Khim. Nauk. 1962, 2, 209–216. [Google Scholar]
- Apiratikul, R.; Pavasant, P. Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash. Chem. Eng. J. 2008, 144, 245–258. [Google Scholar] [CrossRef]
- Wilczak, A.; Keinath, T.M. Kinetics of sorption and desorption of copper(II) and lead(II) on activated carbon. Water Environ. Res. 1993, 65, 238–244. [Google Scholar] [CrossRef]
- Chiron, N.; Guilet, R.; Deydier, E. Adsorption of Cu(II) and Pb(II) onto a grafted silica: Isotherms and kinetic models. Water Res. 2003, 37, 3079–3086. [Google Scholar] [CrossRef]
- Tosun, I. Ammonium removal from aqueous solutions by clinoptilolite: Determination of isotherm and thermodynamic parameters and comparison of kinetics by the Double exponential model and conventional kinetic models. Int. J. Environ. Res. Public Health 2012, 9, 970–984. [Google Scholar] [CrossRef] [PubMed]
- Helferich, F. Ion Exchange; Mc Graw-Hill Inc.: New York, NY, USA, 1962; pp. 250–322. [Google Scholar]
- Filippidis, A.; Godelitsas, A.; Charistos, D.; Misaelides, P.; Kassoli-Fournaraki, A. The chemical behavior of natural zeolites in aqueous environments: Interactions between low-silica zeolites and 1 M NaCl solutions of different initial pH-values. Appl. Clay Sci. 1996, 11, 199–209. [Google Scholar] [CrossRef]
Sample | Content, wt. % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | Na2O | K2O | CaO | MgO | TiO2 | Ni | Loss of Ignition | |
NZ | 65.40 | 14.00 | 2.16 | 1.50 | 1.10 | 3.56 | 0.85 | 0.32 | - | 11.09 |
NZNi | 65.24 | 13.21 | 2.37 | 1.20 | 2.37 | 4.02 | 0.65 | 0.03 | 0.22 | 10.96 |
FeZ | 62.80 | 13.90 | 3.22 | 3.68 | 0.94 | 2.93 | 0.80 | 0.17 | - | 11.56 |
FeZNi | 65.36 | 12.88 | 2.85 | 2.07 | 0.98 | 3.32 | 0.54 | 0.07 | 1.00 | 10.93 |
Kinetic Model/Parameters | NZ | FeZ |
---|---|---|
co [mmol/L] | 10.619 | 10.619 |
qexp [mmol/g] | 0.070 | 0.303 |
Pseudo-first order model (PFO) | ||
qm [mmol/g] | 0.067 | 0.289 |
k1 [1/min] | 0.023 | 0.026 |
r2 | 0.988 | 0.991 |
RMSE × 103 | 2.818 | 12.000 |
χ2 × 104 | 1.548 | 6.811 |
Pseudo-second order model (PSO) | ||
qm [mmol/g] | 0.072 | 0.313 |
k2 [g/(mmol∙min)] | 0.094 | 0.469 |
r2 | 0.993 | 0.991 |
RMSE × 103 | 2.381 | 13.000 |
χ2 × 106 | 0.154 | 2.478 |
Elovich model | ||
αE [mmol/(g·min)] | 0.008 | 0.026 |
βE [g/mmol] | 88.496 | 19.380 |
r2 | 0.946 | 0.941 |
RMSE | 0.007 | 0.031 |
χ2 × 104 | 0.793 | 4.011 |
Weber–Morris intraparticle | ||
diffusion model | ||
kWM1 [mmol/(g∙min1/2)] | 0.008 | 0.038 |
DWM1 × 106 [cm2/min] | 1.422 | 1.645 |
I | 0.009 | 0.061 |
RC [%] | 13.101 | 20.130 |
R2 | 0.973 | 0.992 |
kWM2 × 103 [mmol/(g∙min1/2)] | 0.700 | 3.300 |
DWM2 × 108 [cm2/min] | 1.062 | 1.267 |
R2 | 0.970 | 0.972 |
Double-exponential model | ||
qm [mmol/g] | 0.070 | 0.307 |
kB1 [1/min] | 0.030 | 0.034 |
B1 [mmol/L] | 0.566 | 2.582 |
kB2 × 103 [1/min] | 2.773 | 2.166 |
B2 [mmol/L] | 0.144 | 0.570 |
r1 × 103 [mmol/(g∙min)] | 1.924 | 7.746 |
r2 × 104 [mmol/(g∙min1/2)] | 0.399 | 1.253 |
r × 103 [mmol/(g∙min1/2)] | 1.964 | 7.869 |
RF [%] | 79.718 | 81.916 |
SF [%] | 20.282 | 18.084 |
r2 | 0.997 | 0.996 |
RMSE × 103 | 1.587 | 6.955 |
χ2 × 106 | 3.381 | 6.911 |
Vermeulen’s approximation | ||
qm [mmol/g] | 0.070 | 0.303 |
DV × 106 (cm2/min) | 1.172 | 1.038 |
r2 | 0.981 | 0.975 |
RMSE | 0.053 | 0.226 |
χ2 × 106 | 5.386 | 2.452 |
Sample | Element Quantity, mmol/g | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Na | K | Mg | Ca | Si | Al | O | Fe | Ti | Ni | |
NZ | 0.484 | 0.234 | 0.211 | 0.635 | 10.888 | 2.746 | 27.590 | 0.271 | 0.040 | - |
NZNi | 0.387 | 0.503 | 0.161 | 0.717 | 10.858 | 2.591 | 27.38 | 0.297 | 0.040 | 0.037 |
FeZ | 1.187 | 0.200 | 0.198 | 0.522 | 10.452 | 2.726 | 27.060 | 0.403 | 0.021 | - |
FeZNi | 0.668 | 0.208 | 0.135 | 0.592 | 10.878 | 2.526 | 27.260 | 0.357 | 0.009 | 0.169 |
Element | Na | K | Mg | Ca | Si | Al | O | Fe | Ni |
---|---|---|---|---|---|---|---|---|---|
Sp 1 | 0.50 | 0.82 | 0.57 | 2.32 | 29.33 | 7.86 | 55.65 | 2.21 | 0.74 |
Sp 2 | 0.73 | 0.97 | 1.28 | 2.12 | 28.90 | 7.85 | 55.19 | 1.65 | 1.31 |
Sp 3 | 0.50 | 0.74 | 0.69 | 2.08 | 29.33 | 5.76 | 58.10 | 1.87 | 0.93 |
Sp 4 | 0.56 | 0.84 | 0.75 | 2.04 | 27.81 | 6.17 | 59.74 | 1.23 | 0.86 |
Mean | 0.57 | 0.84 | 0.82 | 2.14 | 28.84 | 6.91 | 57.17 | 1.74 | 0.96 |
Element | Na | K | Mg | Ca | Si | Al | O | Fe | Ni |
---|---|---|---|---|---|---|---|---|---|
Sp 1 | 1.63 | 0.81 | 0.35 | 1.46 | 27.36 | 5.71 | 55.80 | 1.34 | 5.54 |
Sp 2 | 1.34 | 0.84 | 0.49 | 1.70 | 29.45 | 6.40 | 52.97 | 1.47 | 5.34 |
Sp 3 | 1.31 | 0.76 | 0.39 | 1.65 | 29.60 | 5.89 | 50.55 | 3.83 | 6.02 |
Sp 4 | 1.33 | 0.68 | 0.39 | 1.65 | 30.03 | 5.91 | 51.10 | 2.56 | 6.35 |
Mean | 1.40 | 0.77 | 0.41 | 1.62 | 29.11 | 5.97 | 52.61 | 2.30 | 5.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ugrina, M.; Dikić, J.; Nuić, I.; Jevtić, S. Sorption Behavior of Nickel(II) on Natural and Fe(III)-Modified Clinoptilolite: Optimization and Mechanism Insight. Clean Technol. 2025, 7, 78. https://doi.org/10.3390/cleantechnol7030078
Ugrina M, Dikić J, Nuić I, Jevtić S. Sorption Behavior of Nickel(II) on Natural and Fe(III)-Modified Clinoptilolite: Optimization and Mechanism Insight. Clean Technologies. 2025; 7(3):78. https://doi.org/10.3390/cleantechnol7030078
Chicago/Turabian StyleUgrina, Marin, Jelena Dikić, Ivona Nuić, and Sanja Jevtić. 2025. "Sorption Behavior of Nickel(II) on Natural and Fe(III)-Modified Clinoptilolite: Optimization and Mechanism Insight" Clean Technologies 7, no. 3: 78. https://doi.org/10.3390/cleantechnol7030078
APA StyleUgrina, M., Dikić, J., Nuić, I., & Jevtić, S. (2025). Sorption Behavior of Nickel(II) on Natural and Fe(III)-Modified Clinoptilolite: Optimization and Mechanism Insight. Clean Technologies, 7(3), 78. https://doi.org/10.3390/cleantechnol7030078