Improving Environmental Sustainability of Food-Contact Polypropylene Packaging Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
- What is the most impactful phase for PP-PC production?
- What possible solutions can be proposed to enhance the environmental performance of the product?
- What are the economic savings resulting from the introduction of mitigation actions?
2.2. Life Cycle Inventory (LCI) Analysis
2.2.1. Upstream Processes
2.2.2. Core Processes
2.2.3. Downstream Processes
2.3. Mitigation Scenarios
2.3.1. Alternative Scenario 1 (AS1)
2.3.2. Alternative Scenarios 2 and 3 (AS2 and AS3)
2.4. Economic Savings Due to the Lack of CO2 Emissions
3. Results
3.1. What Is the Most Impactful Phase for PP-PC Production?
3.2. What Possible Solutions for Enhancing the Environmental Performance of the Product Can Be Proposed?
3.3. What Is the Economic Saving Resulting from Introducing Mitigation Actions?
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AS1 | Alternative Scenario 1 |
AS2 | Alternative Scenario 2 |
AS3 | Alternative Scenario 3 |
CTRL | Control Scenario |
EFSA | European Food Safety Authority |
EVOH | Ethylene Vinyl Alcohol |
FU | Functional Unit |
GWP | Global Warming Potential |
HDPE | High-Density Polyethylene |
HTPnc | Human Non-Carcinogenic Toxicity |
LCA | Life Cycle Assessment |
LCI | Life Cycle Inventory |
LCIA | Life Cycle Impact Assessment |
NAFTA | North American Free Trade Agreement |
PA | Polyamide |
PCR | Product Category Rules |
PE | Polyethylene |
PET | Polyethylene Terephthalate |
PHBV | 3-hydroxybutyrate-co-3-hydroxyvalerate |
PLA | Polylactic Acid |
PMFP | Fine Particulate Matter Formation |
PP | Polypropylene |
PP-PC | Cheese Tray 135 In-Mold Labeling |
PS | Polystyrene |
PVC | Polyvinylchloride |
SB | System Boundaries |
References
- Marsh, K.; Bugusu, B. Food Packaging—Roles, Materials, and Environmental Issues. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Koo, M.S.; Cho, S.H.; Lyu, M.-Y. Comparison of Thermal and Optical Properties and Flowability of Fossil-Based and Bio-Based Polycarbonate. Macromol. Res. 2017, 25, 1135–1144. [Google Scholar] [CrossRef]
- Majder-Łopatka, M.; Węsierski, T.; Ankowski, A.; Ratajczak, K.; Duralski, D.; Piechota-Polanczyk, A.; Polanczyk, A. Thermal Analysis of Plastics Used in the Food Industry. Materials 2022, 15, 248. [Google Scholar] [CrossRef]
- Oladele, I.O.; Okoro, C.J.; Adelani, S.O.; Agbeboh, N.I.; Betiku, O.T. Current Application of Recycled Waste Plastics as a Sustainable Materials: A Review on Availability, Processing and Application. J. Thermoplast. Compos. Mater. 2024, 38, 277–301. [Google Scholar] [CrossRef]
- Williams, A.T.; Rangel-Buitrago, N. Marine Litter: Solutions for a Major Environmental Problem. J. Coast. Res. 2019, 35, 648–663. [Google Scholar] [CrossRef]
- Wan, Y.; Wu, C.; Xue, Q.; Hui, X. Effects of Plastic Contamination on Water Evaporation and Desiccation Cracking in Soil. Sci. Total Environ. 2019, 654, 576–582. [Google Scholar] [CrossRef]
- Hurley, R.; Horton, A.; Lusher, A.; Nizzetto, L. Chapter 7—Plastic Waste in the Terrestrial Environment. In Plastic Waste and Recycling; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 163–193. ISBN 978-0-12-817880-5. [Google Scholar]
- Carnevale Miino, M.; Galafassi, S.; Zullo, R.; Torretta, V.; Rada, E.C. Microplastics Removal in Wastewater Treatment Plants: A Review of the Different Approaches to Limit Their Release in the Environment. Sci. Total Environ. 2024, 930, 172675. [Google Scholar] [CrossRef]
- Baltrocchi, A.P.D.; Maggi, L.; Carnevale Miino, M.; Torretta, V.; Rada, E.C. Comparison of Mixed and Door-to-Door Systems for Urban Waste Collection in Terms of Effectiveness and Greenhouse Gas Emissions: A Case Study from Two Mountainous Italian Valleys. Resources 2024, 13, 17. [Google Scholar] [CrossRef]
- Nayanathara Thathsarani Pilapitiya, P.G.C.; Ratnayake, A.S. The World of Plastic Waste: A Review. Clean. Mater. 2024, 11, 100220. [Google Scholar] [CrossRef]
- Thompson, R.C.; Moore, C.J.; vom Saal, F.S.; Swan, S.H. Plastics, the Environment and Human Health: Current Consensus and Future Trends. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2153–2166. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of Plastic Solid Waste: A State of Art Review and Future Applications. Compos. B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Millican, J.M.; Agarwal, S. Plastic Pollution: A Material Problem? Macromolecules 2021, 54, 4455–4469. [Google Scholar] [CrossRef]
- Jaideva, R.; Mondal, S. Polypropylene Homopolymer/Unmodified Minor Mineral Fuller’s Earth Composites: A Comprehensive Experimental Study on Mechanical and Thermal Properties. Iran. Polym. J. 2024, 33, 659–669. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic Mulching in Agriculture. Trading Short-Term Agronomic Benefits for Long-Term Soil Degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Velásquez, E.; de Dicastillo, C.L.; Rojas, A.; Garrido, L.; Pérez, C.J.; Lira, M.; Guarda, A.; Galotto, M.J. Multiple Mechanical Recycling of a Post-Industrial Flexible Polypropylene and Its Nanocomposite with Clay: Impact on Properties for Food Packaging Applications. Food Packag. Shelf Life 2024, 43, 101272. [Google Scholar] [CrossRef]
- Beltran, M.; Tjahjono, B.; Bogush, A.; Julião, J.; Teixeira, E.L.S. Food Plastic Packaging Transition towards Circular Bioeconomy: A Systematic Review of Literature. Sustainability 2021, 13, 3896. [Google Scholar] [CrossRef]
- Ahmad, A.; Qurashi, A.; Sheehan, D. Nano Packaging—Progress and Future Perspectives for Food Safety, and Sustainability. Food Packag. Shelf Life 2023, 35, 100997. [Google Scholar] [CrossRef]
- Asgher, M.; Qamar, S.A.; Bilal, M.; Iqbal, H.M.N. Bio-Based Active Food Packaging Materials: Sustainable Alternative to Conventional Petrochemical-Based Packaging Materials. Food Res. Int. 2020, 137, 109625. [Google Scholar] [CrossRef] [PubMed]
- Longo, C.; Savaris, M.; Zeni, M.; Brandalise, R.N.; Grisa, A.M.C. Degradation Study of Polypropylene (PP) and Bioriented Polypropylene (BOPP) in the Environment. Mater. Res. 2011, 14, 442–448. [Google Scholar] [CrossRef]
- Strupinsty, G.; Brody, A.L. Packaging Applications for High Temperature Plastics. In Applications of High Temperature Polymers; CRC Press: Boca Raton, FL, USA, 2018; pp. 181–202. [Google Scholar]
- Freudenthaler, P.J.; Fischer, J.; Liu, Y.; Lang, R.W. Polypropylene Post-Consumer Recyclate Compounds for Thermoforming Packaging Applications. Polymers 2023, 15, 345. [Google Scholar] [CrossRef]
- Tsioptsias, C.; Leontiadis, K.; Tzimpilis, E.; Tsivintzelis, I. Polypropylene Nanocomposite Fibers: A Review of Current Trends and New Developments. J. Plast. Film Sheeting 2021, 37, 283–311. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Kan, M.; Miller, S.A. Environmental Impacts of Plastic Packaging of Food Products. Resour. Conserv. Recycl. 2022, 180, 106156. [Google Scholar] [CrossRef]
- Alsabri, A.; Tahir, F.; Al-Ghamdi, S.G. Environmental Impacts of Polypropylene (PP) Production and Prospects of Its Recycling in the GCC Region. Mater. Today Proc. 2022, 56, 2245–2251. [Google Scholar] [CrossRef]
- Ritchie, H.; Rosado, P.; Roser, M. Environmental Impacts of Food Production. Available online: https://ourworldindata.org/environmental-impacts-of-food (accessed on 5 November 2024).
- Matthews, C.; Moran, F.; Jaiswal, A.K. A Review on European Union’s Strategy for Plastics in a Circular Economy and Its Impact on Food Safety. J. Clean. Prod. 2021, 283, 125263. [Google Scholar] [CrossRef]
- Ogunola, O.S.; Onada, O.A.; Falaye, A.E. Mitigation Measures to Avert the Impacts of Plastics and Microplastics in the Marine Environment (a Review). Environ. Sci. Pollut. Res. 2018, 25, 9293–9310. [Google Scholar] [CrossRef]
- Ferronato, N.; Baltrocchi, A.P.D.; Romagnoli, F.; Calle Mendoza, I.J.; Gorritty Portillo, M.A.; Torretta, V. Environmental Life Cycle Assessment of Biomass and Cardboard Waste-Based Briquettes Production and Consumption in Andean Areas. Energy Sustain. Dev. 2023, 72, 139–150. [Google Scholar] [CrossRef]
- Dal Lago, B.; Krelani, V.; Visconti, D.; Berisha, E.; Baltrocchi, A.P.D.; Torretta, V. Comparison of the Environmental Impact of Similar Prefabricated Industrial Structures Made of Precast Concrete or Steel; Springer Nature: New York, NY, USA, 2025; Volume 573, ISBN 9783031806711. [Google Scholar]
- Baltrocchi, A.P.D.; Lotti, D.; Carnevale Miino, M.; Maggi, L.; Rada, E.C.; Torretta, V. Environmental Impact of Three Different Engineering Thermoplastics: How Much Does It Change When Using Recycled Polyamide? J. Clean. Prod. 2025, 514, 145769. [Google Scholar] [CrossRef]
- Baltrocchi, A.P.D.; Carnevale Miino, M.; Maggi, L.; Rada, E.C.; Torretta, V. A Comprehensive Critical Review of Life Cycle Assessment Applied to Thermoplastic Polymers for Mechanical and Electronic Engineering. Environ. Technol. Rev. 2025, 14, 458–470. [Google Scholar] [CrossRef]
- Maga, D.; Hiebel, M.; Aryan, V. A Comparative Life Cycle Assessment of Meat Trays Made of Various Packaging Materials. Sustainability 2019, 11, 5324. [Google Scholar] [CrossRef]
- Vigil, M.; Pedrosa-Laza, M.; Cabal, J.V.A.; Ortega-Fernández, F. Sustainability Analysis of Active Packaging for the Fresh Cut Vegetable Industry by Means of Attributional & Consequential Life Cycle Assessment. Sustainability 2020, 12, 7207. [Google Scholar] [CrossRef]
- David, G.; Croxatto Vega, G.; Sohn, J.; Nilsson, A.E.; Hélias, A.; Gontard, N.; Angellier-Coussy, H. Using Life Cycle Assessment to Quantify the Environmental Benefit of Upcycling Vine Shoots as Fillers in Biocomposite Packaging Materials. Int. J. Life Cycle Assess. 2021, 26, 738–752. [Google Scholar] [CrossRef]
- Snyder, W.R.; Park, J. Environmental and Economic Analysis of Reusable and Single-Use Food Packaging Formats in University Campus Food Services. Packag. Technol. Sci. 2024, 37, 841–855. [Google Scholar] [CrossRef]
- Pelaracci, S.; Rocchi, L.; Romagnoli, F.; Boggia, A.; Paolotti, L. Agricultural Co-Product Management: An LCA Perspective on the Use of Safflower Oilcake from Bio-Oil Production in Umbria Region, Italy. Environ. Clim. Technol. 2022, 26, 25–35. [Google Scholar] [CrossRef]
- Romagnoli, F.; Paoli, R.; Arias, A.; Entrena-Barbero, E.; Ilmjärv, T.; Elvevold, K.; Moreira, M.T. Furcellaria Lumbricalis Macroalgae Cascade Biorefinery: A Life Cycle Assessment Study in the Baltic Sea Region. J. Clean. Prod. 2024, 478, 143861. [Google Scholar] [CrossRef]
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- PRé Sustainability BV. SimaPro 9.5 What’s New? PRé Sustainability BV: Amersfoort, The Netherlands, 2023. [Google Scholar]
- Ecoinvent Database. Available online: https://ecoinvent.org/database/ (accessed on 3 April 2025).
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; De Schryver, A.; Struijs, J.; Van Zelm, R. ReCiPe 2008: A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level; Ministry of Housing, Spatial Planning and the Environment: The Hague, The Netherlands, 2009. [Google Scholar]
- Paoli, R.; Feofilovs, M.; Kamenders, A.; Romagnoli, F. Peat Production for Horticultural Use in the Latvian Context: Sustainability Assessment through LCA Modeling. J. Clean. Prod. 2022, 378, 134559. [Google Scholar] [CrossRef]
- UN CPC 347; EPD International AB Product Category Rules (PCR) Plastics in Primary Forms Product Category Classification. EPD International AB: Stockholm, Sweden, 2022.
- Interagency Working Group on Social Cost of Greenhouse Gases, United States Government. Technical Support Document: Social Cost of Carbon, Methane, and Nitrous Oxide Interim Estimates Under Executive Order 13990; U.S. Government: Washington, DC, USA, 2021. [Google Scholar]
- Rennert, K.; Errickson, F.; Prest, B.C.; Rennels, L.; Newell, R.G.; Pizer, W.; Kingdon, C.; Wingenroth, J.; Cooke, R.; Parthum, B.; et al. Comprehensive Evidence Implies a Higher Social Cost of CO2. Nature 2022, 610, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Samuel, S.A. Carbon Pricing Mechanisms for Reducing Greenhouse Gas Emissions and Encouraging Sustainable Industrial Practices. World J. Adv. Res. Rev. 2025, 25, 001–024. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Wang, H.; Wang, Y.; Han, S. Integrated Life Cycle Analysis of Cost and CO2 Emissions from Vehicles and Construction Work Activities in Highway Pavement Service Life. Atmosphere 2023, 14, 194. [Google Scholar] [CrossRef]
- Baltrocchi, A.P.D.; Carnevale Miino, M.; Katsoyiannis, I.A.; Tolkou, A.K.; Maggi, L.; Rada, E.C.; Torretta, V. Assessment of Environmental Sustainability of Drinking Water Treatments for Arsenic Removal. Resour. Conserv. Recycl. 2024, 211, 107878. [Google Scholar] [CrossRef]
Material | Amount | Unit | I/O | Dataset |
---|---|---|---|---|
Upstream processes | ||||
PP | 1.40 × 10−2 | kg | I | Polypropylene, granulate {RER}| production | Cut-off, S |
Packaging 1 PP | 5.64 × 10−5 | kg | I | Packaging film, low density polyethylene {RER}| production | Cut-off, S |
Packaging 2 PP | 3.60 × 10−5 | kg | I | Corrugated board box {RER}| production | Cut-off, S |
PP transport | 1.17 × 10−1 | kg km | I | Transport, freight, lorry 16–32 metric ton, euro6 {RER}| market for transport, freight, lorry 16–32 metric ton, EURO6 | Cut-off, S |
Packaging cardboard 1 transport | 7.46 × 10−2 | kg km | I | Transport, freight, lorry 7.5–16 metric ton, euro6 {RER}| market for transport, freight, lorry 7.5–16 metric ton, EURO6 | Cut-off, S |
Packaging cardboard 2 transport | 7.46 × 10−2 | kg km | I | Transport, freight, lorry 7.5–16 metric ton, euro6 {RER}| market for transport, freight, lorry 7.5–16 metric ton, EURO6 | Cut-off, S |
Tape 1 transport | 6.53 × 10−6 | kg km | I | Transport, freight, lorry 7.5–16 metric ton, euro6 {RER}| market for transport, freight, lorry 7.5–16 metric ton, EURO6 | Cut-off, S |
Tape 2 transport | 1.09 × 10−5 | kg km | I | Transport, freight, lorry 7.5–16 metric ton, euro6 {RER}| market for transport, freight, lorry 7.5–16 metric ton, EURO6 | Cut-off, S |
HPDE film transport | 5.44 × 10−5 | kg km | I | Transport, freight, lorry 7.5–16 metric ton, euro6 {RER}| market for transport, freight, lorry 7.5–16 metric ton, EURO6 | Cut-off, S |
HDPE bag transport | 2.22 × 10−3 | kg km | I | Transport, freight, lorry 7.5–16 metric ton, euro6 {RER}| market for transport, freight, lorry 7.5–16 metric ton, EURO6 | Cut-off, S |
Wood pallet transport | 1.21 × 10−2 | kg km | I | Transport, freight, lorry 7.5–16 metric ton, euro6 {RER}| market for transport, freight, lorry 7.5–16 metric ton, EURO6 | Cut-off, S |
Core processes | ||||
Electricity | 2.92 × 10−2 | kWh | I | Electricity, medium voltage {IT}| market for | Cut-off, S |
Packaging cardboard | 1.38 × 10−3 | kg | I | Corrugated board box {RER}| production | Cut-off, S |
Tape 1 | 1.76 × 10−6 | kg | I | Polypropylene, granulate {RER}| production | Cut-off, S |
Tape 2 | 2.94 × 10−6 | kg | I | Polypropylene, granulate {RER}| production | Cut-off, S |
HDPE film | 5.29 × 10−5 | kg | I | Polyethylene, high density, granulate {RER}| production | Cut-off, S |
Wood pallet | 4.41 × 10−5 | kg | I | EUR-flat pallet {RER}| production | Cut-off, S |
HDPE film | 1.47 × 10−5 | kg | I | Polyethylene, high density, granulate {RER}| production | Cut-off, S |
Natural gas | 2.41 × 10−4 | m3 | I | Natural gas, high pressure {IT}| market for | Cut-off, S |
Water | 7.14 × 10−3 | kg | I | Tap water {Europe without Switzerland}| market for | Cut-off, S |
Oil for machine | 1.13 × 10−6 | kg | I | Lubricating oil {RER}| market for lubricating oil | Cut-off, S |
Waste cardboard | 3.60 × 10−5 | kg | O | Waste paperboard {IT}| market for waste paperboard | Cut-off, S |
Waste plastic | 3.59 × 10−4 | kg | O | Waste plastic, mixture {IT}| market for waste plastic, mixture | Cut-off, S |
Waste oil | 1.13 × 10−6 | kg | O | Waste mineral oil {Europe without Switzerland}| treatment of waste mineral oil, hazardous waste incineration, with energy recovery | Cut-off, S |
Downstream processes | ||||
Final Product transport | 4.83 × 10−1 | kg km | I | Transport, freight, lorry 7.5–16 metric ton, euro6 {RER}| market for transport, freight, lorry 7.5–16 metric ton, EURO6 | Cut-off, S |
Energy Origin [%] | CTRL | AS1a | AS1b | AS1c | AS2 | AS3 |
---|---|---|---|---|---|---|
Geothermal | 2 | 1.5 | 1 | 0.5 | 13 | 6 |
Hydro | 18 | 13.5 | 9 | 4.5 | 49 | 56 |
Wind power | 6 | 4.5 | 3 | 1.5 | 38 | 20 |
Biogas | 4 | 3 | 2 | 1 | 0 | 13 |
Biomass | 1 | 0.7 | 0.5 | 0.3 | 0 | 4 |
Photovoltaic | 0 | 25 | 50 | 75 | 0 | 0 |
Total renewable energy | 31 | 48.2 | 65.5 | 82.8 | 100 | 100 |
Imported from abroad | 17 | 12.8 | 8.5 | 4.2 | 0 | 0 |
Coal | 10 | 7.5 | 5 | 2.5 | 0 | 0 |
Natural gas | 38 | 28.5 | 19 | 9.5 | 0 | 0 |
Oil | 4 | 3 | 2 | 1 | 0 | 0 |
Total non-renewable energy | 69 | 51.8 | 34.5 | 17.2 | 0 | 0 |
Impact Category | CTRL | AS1a | AS1b | AS1c | AS2 | AS3 |
---|---|---|---|---|---|---|
GWP (tons CO2 eq) | 101 | 84 | 66 | 49 | 35 | 30 |
GWP saved (tons CO2 eq) | - | 17 | 35 | 52 | 66 | 71 |
Emissions reduction | −17% | −35% | −52% | −65% | −70% | |
EUR saved per 100 tons—V1 | 824 | 1682 | 2505 | 3157 | 3398 | |
EUR saved per 100 tons—V2 | 3020 | 6166 | 9186 | 11,577 | 12,458 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baltrocchi, A.P.D.; Romagnoli, F.; Carnevale Miino, M.; Torretta, V. Improving Environmental Sustainability of Food-Contact Polypropylene Packaging Production. Clean Technol. 2025, 7, 70. https://doi.org/10.3390/cleantechnol7030070
Baltrocchi APD, Romagnoli F, Carnevale Miino M, Torretta V. Improving Environmental Sustainability of Food-Contact Polypropylene Packaging Production. Clean Technologies. 2025; 7(3):70. https://doi.org/10.3390/cleantechnol7030070
Chicago/Turabian StyleBaltrocchi, Alberto Pietro Damiano, Francesco Romagnoli, Marco Carnevale Miino, and Vincenzo Torretta. 2025. "Improving Environmental Sustainability of Food-Contact Polypropylene Packaging Production" Clean Technologies 7, no. 3: 70. https://doi.org/10.3390/cleantechnol7030070
APA StyleBaltrocchi, A. P. D., Romagnoli, F., Carnevale Miino, M., & Torretta, V. (2025). Improving Environmental Sustainability of Food-Contact Polypropylene Packaging Production. Clean Technologies, 7(3), 70. https://doi.org/10.3390/cleantechnol7030070