Sewage Sludge Biochar as a Persulfate Activator for Methylene Blue Degradation
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of the Sewage Sludge-Derived Biochar
3.2. Adsorption and Catalytic Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Öfverström, S.; Davidsson, Å.; Haghighatafshar, S.; Kjerstadius, H.; Jansen, J.L.C. Waste Ochre for Control of Phosphates and Sulfides in Digesters at Wastewater Treatment Plants with Enhanced Biological Phosphorus Removal. Clean Technol. 2020, 2, 116–126. [Google Scholar] [CrossRef]
- Kanafin, Y.N.; Kakimov, Y.; Adamov, A.; Makhatova, A.; Yeshmuratov, A.; Poulopoulos, S.G.; Inglezakis, V.J.; Arkhangelsky, E. The Effect of Caffeine, Metronidazole and Ibuprofen on Continuous Flow Activated Sludge Process. J. Chem. Technol. Biotechnol. 2021, 96, 1370–1380. [Google Scholar] [CrossRef]
- Ospanov, K.; Myrzahmetov, M.; Zapparov, M. Study of the Products of Pyrolysis Recycling. Sewage Sludge in the Aeration Station Almaty, Kazakhstan. Procedia Eng. 2015, 117, 288–295. [Google Scholar] [CrossRef]
- Andraka, D.; Ospanov, K.; Myrzakhmetov, M. Current State of Communal Sewage Treatment in the Republic of Kazakhstan. J. Ecol. Eng. 2015, 16, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Faria, W.M.; Figueiredo, C.C.d.; Coser, T.R.; Vale, A.T.; Schneider, B.G. Is Sewage Sludge Biochar Capable of Replacing Inorganic Fertilizers for Corn Production? Evidence from a Two-Year Field Experiment. Arch. Agron. Soil Sci. 2018, 64, 505–519. [Google Scholar] [CrossRef]
- Thomsen, T.P.; Sárossy, Z.; Ahrenfeldt, J.; Henriksen, U.B.; Frandsen, F.J.; Müller-Stöver, D.S. Changes Imposed by Pyrolysis, Thermal Gasification and Incineration on Composition and Phosphorus Fertilizer Quality of Municipal Sewage Sludge. J. Environ. Manag. 2017, 198, 308–318. [Google Scholar] [CrossRef]
- Beckinghausen, A.; Reynders, J.; Merckel, R.; Wu, Y.W.; Marais, H.; Schwede, S. Post-Pyrolysis Treatments of Biochars from Sewage Sludge and A. Mearnsii for Ammonia (NH4-n) Recovery. Appl. Energy 2020, 271, 115212. [Google Scholar] [CrossRef]
- Kanafin, Y.N.; Abduvalov, A.; Kaikanov, M.; Poulopoulos, S.G.; Atabaev, T.S. A Review on WO3 Photocatalysis Used for Wastewater Treatment and Pesticide Degradation. Heliyon 2025, 11, e40788. [Google Scholar] [CrossRef]
- Kamal, A.; Kanafin, Y.N.; Satayeva, A.; Kim, J.; Poulopoulos, S.G.; Arkhangelsky, E. Removal of Carbamazepine, Sulfamethoxazole and Aspirin at Municipal Wastewater Treatment Plant of Astana, Kazakhstan: Paths to Increase the Efficiency of the Treatment Process. J. Chem. Technol. Biotechnol. 2024, 99, 2248–2258. [Google Scholar] [CrossRef]
- Kanafin, Y.N.; Makhatova, A.; Meiramkulova, K.; Poulopoulos, S.G. Treatment of a Poultry Slaughterhouse Wastewater Using Advanced Oxidation Processes. J. Water Process Eng. 2022, 47, 102694. [Google Scholar] [CrossRef]
- Stathoulopoulos, A.; Mantzavinos, D.; Frontistis, Z. Coupling Persulfate-Based AOPs: A Novel Approach for Piroxicam Degradation in Aqueous Matrices. Water 2020, 12, 1530. [Google Scholar] [CrossRef]
- Lin, C.C.; Wu, M.S. Degradation of Ciprofloxacin by UV/S2O82-Process in a Large Photoreactor. J. Photochem. Photobiol. A Chem. 2014, 285, 1–6. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Q.; Hong, J. Sulfate Radical Degradation of Acetaminophen by Novel Iron–Copper Bimetallic Oxidation Catalyzed by Persulfate: Mechanism and Degradation Pathways. Appl. Surf. Sci. 2017, 422, 443–451. [Google Scholar] [CrossRef]
- Teng, C.; Zhou, K.; Peng, C.; Chen, W. Characterization and Treatment of Landfill Leachate: A Review. Water Res. 2021, 203, 117525. [Google Scholar] [CrossRef]
- Lee, J.; Von Gunten, U.; Kim, J.H. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, N.; Deng, Y.; Yang, Y.; Ma, Y. Ultraviolet (UV) Light-Activated Persulfate Oxidation of Sulfamethazine in Water. Chem. Eng. J. 2012, 195–196, 248–253. [Google Scholar] [CrossRef]
- Ma, D.; Yi, H.; Lai, C.; Liu, X.; Huo, X.; An, Z.; Li, L.; Fu, Y.; Li, B.; Zhang, M.; et al. Critical Review of Advanced Oxidation Processes in Organic Wastewater Treatment. Chemosphere 2021, 275, 130104. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.F.; An, L.; Wu, D.D. The Use of Carbon Materials in Persulfate-Based Advanced Oxidation Processes: A Review. New Carbon Mater. 2020, 35, 667–683. [Google Scholar] [CrossRef]
- Miserli, K.; Kogola, D.; Paraschoudi, I.; Konstantinou, I. Activation of Persulfate by Biochar for the Degradation of Phenolic Compounds in Aqueous Systems. Chem. Eng. J. Adv. 2022, 9, 100201. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, S.; Chen, D.; Dai, G.; Wei, D.; Shu, Y. Activation of Persulfate with Biochar for Degradation of Bisphenol A in Soil. Chem. Eng. J. 2020, 381, 122637. [Google Scholar] [CrossRef]
- Lykoudi, A.; Frontistis, Z.; Vakros, J.; Manariotis, I.D.; Mantzavinos, D. Degradation of Sulfamethoxazole with Persulfate Using Spent Coffee Grounds Biochar as Activator. J. Environ. Manag. 2020, 271, 111022. [Google Scholar] [CrossRef]
- Magioglou, E.; Frontistis, Z.; Vakros, J.; Manariotis, I.D.; Mantzavinos, D. Activation of Persulfate by Biochars from Valorized Olive Stones for the Degradation of Sulfamethoxazole. Catalysts 2019, 9, 419. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, Q.; Li, M.; Sang, W.; Qiu, Y.; Xie, C. Activation of Persulfate by Manganese Oxide-Modified Sludge-Derived Biochar to Degrade Orange G in Aqueous Solution. Environ. Pollut. Bioavailab. 2019, 31, 70–79. [Google Scholar] [CrossRef]
- Simetić, T.; Marjanović Srebro, T.; Apostolović, T.; Anojčić, J.; Đukanović, N.; Mutić, S.; Molnar Jazić, J.; Beljin, J. Biochar as a Catalyst in Persulfate Activation: A Sustainable Approach to Remove Pesticides from Water. Processes 2025, 13, 1856. [Google Scholar] [CrossRef]
- Zang, T.; Wang, H.; Liu, Y.; Dai, L.; Zhou, S.; Ai, S. Fe-Doped Biochar Derived from Waste Sludge for Degradation of Rhodamine B via Enhancing Activation of Peroxymonosulfate. Chemosphere 2020, 261, 127616. [Google Scholar] [CrossRef]
- Zeng, H.; Qi, W.; Zhai, L.; Wang, F.; Zhang, J.; Li, D. Preparation and Characterization of Sludge-Based Magnetic Biochar by Pyrolysis for Methylene Blue Removal. Nanomaterials 2021, 11, 2473. [Google Scholar] [CrossRef] [PubMed]
- Călin, C.; Sîrbu, E.E.; Tănase, M.; Győrgy, R.; Popovici, D.R.; Banu, I. A Thermogravimetric Analysis of Biomass Conversion to Biochar: Experimental and Kinetic Modeling. Appl. Sci. 2024, 14, 9856. [Google Scholar] [CrossRef]
- Kujawska, J.; Wojtaś, E.; Charmas, B. Biochar Derived from Sewage Sludge: The Impact of Pyrolysis Temperature on Chemical Properties and Agronomic Potential. Sustainability 2024, 16, 8225. [Google Scholar] [CrossRef]
- Cárdenas-Aguiar, E.; Gascó, G.; Paz-Ferreiro, J.; Méndez, A. Thermogravimetric Analysis and Carbon Stability of Chars Produced from Slow Pyrolysis and Hydrothermal Carbonization of Manure Waste. J. Anal. Appl. Pyrolysis 2019, 140, 434–443. [Google Scholar] [CrossRef]
- Varkolu, M.; Gundekari, S.; Omvesh; Palla, V.C.S.; Kumar, P.; Bhattacharjee, S.; Vinodkumar, T. Recent Advances in Biochar Production, Characterization, and Environmental Applications. Catalysts 2025, 15, 243. [Google Scholar] [CrossRef]
- Chen, J.; Li, S. Characterization of Biofuel Production from Hydrothermal Treatment of Hyperaccumulator Waste (Pteris Vittata L.) in Sub- and Supercritical Water. RSC Adv. 2020, 10, 2160–2169. [Google Scholar] [CrossRef]
- Kritikaki, A.; Karmali, V.; Vathi, D.; Bartzas, G.; Komnitsas, K. Advanced Characterization of Biochars Produced from Three Different Organic-Based Feedstocks and Their Potential Applications. Circ. Econ. Sustain. 2025, 1–24. Available online: https://link.springer.com/article/10.1007/s43615-025-00580-w (accessed on 20 April 2025). [CrossRef]
- Zafeiriou, I.; Karadendrou, K.; Ioannou, D.; Karadendrou, M.A.; Detsi, A.; Kalderis, D.; Massas, I.; Gasparatos, D. Effects of Biochars Derived from Sewage Sludge and Olive Tree Prunings on Cu Fractionation and Mobility in Vineyard Soils over Time. Land 2023, 12, 416. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, N.; Xiao, Z.; Li, Z.; Zhang, D. Characterization of Biochars Derived from Different Materials and Their Effects on Microbial Dechlorination of Pentachlorophenol in a Consortium. RSC Adv. 2019, 9, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Ariyanti, D.; Widiasa, I.N.; Widiyanti, M.; Lesdantina, D.; Gao, W. Agricultural Waste-Based Magnetic Biochar Produced via Hydrothermal Route for Petroleum Spills Adsorption. Int. J. Renew. Energy Dev. 2023, 12, 499–507. [Google Scholar] [CrossRef]
- Czechowska-Kosacka, A. Application of Sewage Sludge for the Production of Construction. MATEC Web Conf. 2019, 252, 05025. [Google Scholar] [CrossRef]
- Ouyang, D.; Yan, J.; Qian, L.; Chen, Y.; Han, L.; Su, A.; Zhang, W.; Ni, H.; Chen, M. Degradation of 1,4-Dioxane by Biochar Supported Nano Magnetite Particles Activating Persulfate. Chemosphere 2017, 184, 609–617. [Google Scholar] [CrossRef]
- Kadam, R.H.; Alone, S.T.; Bichile, G.K.; Jadhav, K.M. Measurement of Atomic Number and Mass Attenuation Coefficient in Magnesium Ferrite. Pramana-J. Phys. 2007, 68, 869–874. [Google Scholar] [CrossRef]
- Nardis, B.O.; Santana Da Silva Carneiro, J.; Souza, I.M.G.D.; Barros, R.G.D.; Azevedo Melo, L.C. Phosphorus Recovery Using Magnesium-Enriched Biochar and Its Potential Use as Fertilizer. Arch. Agron. Soil Sci. 2021, 67, 1017–1033. [Google Scholar] [CrossRef]
- Elnour, A.Y.; Alghyamah, A.A.; Shaikh, H.M.; Poulose, A.M.; Al-Zahrani, S.M.; Anis, A.; Al-Wabel, M.I. Effect of Pyrolysis Temperature on Biochar Microstructural Evolution, Physicochemical Characteristics, and Its Influence on Biochar/Polypropylene Composites. Appl. Sci. 2019, 9, 1149. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Liu, R. Effects of Pyrolysis Temperature and Heating Time on Biochar Obtained from the Pyrolysis of Straw and Lignosulfonate. Bioresour. Technol. 2015, 176, 288–291. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E.; Neugschwandtner, R.W.; Konvalina, P.; Kopecký, M.; Moudrý, J.; Perná, K.; Murindangabo, Y.T. The Impact of Pyrolysis Temperature on Biochar Properties and Its Effects on Soil Hydrological Properties. Sustainability 2022, 14, 14722. [Google Scholar] [CrossRef]
- Fachini, J.; de Figueiredo, C.C. Pyrolysis of Sewage Sludge: Physical, Chemical, Morphological and Mineralogical Transformations. Braz. Arch. Biol. Technol. 2022, 65, e22210592. Available online: https://www.scielo.br/j/babt/a/TZnv3QqjqDm8WdKN4FF47ZM/?format=html&lang=en (accessed on 20 April 2025). [CrossRef]
- Li, S.; Zhou, Y.; Wang, J.; Dou, M.; Zhang, Q.; Huo, K.; Han, C.; Shi, J. Sewage Sludge Pyrolysis ‘Kills Two Birds with One Stone’: Biochar Synergies with Persulfate for Pollutants Removal and Energy Recovery. Chemosphere 2024, 363, 142824. [Google Scholar] [CrossRef]
- Kim, D.; Hadigheh, S.A.; Wei, Y. Unlocking Biosolid Pyrolysis: Towards Tailored Biochar with Different Surface Properties. Mater. Today Sustain. 2024, 27, 100868. [Google Scholar] [CrossRef]
- Zhao, J.J.; Shen, X.J.; Domene, X.; Alcañiz, J.M.; Liao, X.; Palet, C. Comparison of Biochars Derived from Different Types of Feedstock and Their Potential for Heavy Metal Removal in Multiple-Metal Solutions. Sci. Rep. 2019, 9, 9869. [Google Scholar] [CrossRef]
- Ioannidi, A.A.; Frigana, A.; Vakros, J.; Frontistis, Z.; Mantzavinos, D. Persulfate Activation Using Biochar from Pomegranate Peel for the Degradation of Antihypertensive Losartan in Water: The Effects of Pyrolysis Temperature, Operational Parameters, and a Continuous Flow Reactor. Catalysts 2024, 14, 127. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, L.; Tang, Y.; Zhou, J.; Shi, B. An Iron–Based Biochar for Persulfate Activation with Highly Efficient and Durable Removal of Refractory Dyes. J. Environ. Chem. Eng. 2022, 10, 106979. [Google Scholar] [CrossRef]
- Guo, L.; Liu, D.; Han, R.; Yin, A.; Gong, G.; Li, S.; Chen, R.; Yang, J.; Liu, Z.; Zhi, K. Advances in Activation of Persulfate by Novel Carbon-Based Materials: Degradation of Emerging Contaminants, Mechanisms, and Perspectives. Crystals 2025, 15, 432. [Google Scholar] [CrossRef]
- Hadi, S.; Taheri, E.; Amin, M.M.; Fatehizadeh, A.; Aminabhavi, T.M. Synergistic Degradation of 4-Chlorophenol by Persulfate and Oxalic Acid Mixture with Heterogeneous Fenton like System for Wastewater Treatment: Adaptive Neuro-Fuzzy Inference Systems Modeling. J. Environ. Manag. 2020, 268, 110678. [Google Scholar] [CrossRef] [PubMed]
- Kanafin, Y.N.; Abdirova, P.; Arkhangelsky, E.; Dionysiou, D.D.; Poulopoulos, S.G. UVA and Goethite Activated Persulfate Oxidation of Landfill Leachate. Chem. Eng. J. Adv. 2023, 14, 100452. [Google Scholar] [CrossRef]
- Kanafin, Y.N.; Makhatova, A.; Zarikas, V.; Arkhangelsky, E.; Poulopoulos, S.G. Photo-Fenton-like Treatment of Municipal Wastewater. Catalysts 2021, 11, 1206. [Google Scholar] [CrossRef]
- Giannakopoulos, S.; Vakros, J.; Frontistis, Z.; Manariotis, I.D.; Venieri, D.; Poulopoulos, S.G.; Mantzavinos, D. Biochar from Lemon Stalks: A Highly Active and Selective Carbocatalyst for the Oxidation of Sulfamethoxazole with Persulfate. Catalysts 2023, 13, 233. [Google Scholar] [CrossRef]
Elements | Content, % | |||
---|---|---|---|---|
B300 | B500 | B700 | B900 | |
C | 52.74 ± 1.54 | 37.36 ± 2.26 | 30.78 ± 4.99 | 28.28 ± 7.46 |
O | 33.74 ± 0.96 | 37.80 ± 1.71 | 39.26 ± 1.14 | 40.09 ± 3.53 |
Mg | 0.81 ± 0.02 | 1.41 ± 0.04 | 1.10 ± 0.19 | 1.29 ± 0.38 |
Na | 0 | 0 | 0.52 ± 0.45 | 0 |
Al | 1.89 ± 0.33 | 3.36 ± 0.11 | 4.05 ± 0.64 | 4.13 ± 0.67 |
Si | 4.25 ± 0.91 | 8.25 ± 1.15 | 9.57 ± 2.28 | 9.62 ± 1.38 |
P | 1.76 ± 0.16 | 3.46 ± 0.08 | 2.75 ± 0.58 | 1.20 ± 0.22 |
S | 0.64 ± 0.04 | 0.00 ± 0.00 | 0.58 ± 0.29 | 0.49 ± 0.35 |
Cl | 0 | 0.22 ± 0.04 | 0 | 0.08 ± 0.09 |
K | 0.73 ± 0.28 | 1.41 ± 0.13 | 1.37 ± 0.26 | 0.74 ± 0.11 |
Ca | 1.96 ± 0.33 | 3.68 ± 0.21 | 5.78 ± 2.07 | 9.28 ± 0.91 |
Ti | 0 | 0 | 0.36 ± 0.13 | 0.36 ± 0.07 |
Fe | 1.51 ± 0.44 | 3.09 ± 0.29 | 3.90 ± 0.87 | 4.46 ± 0.29 |
Biochars | SBET, m2/g | Pore Volume, cm3/g |
---|---|---|
B300 | 3.649 | - |
B500 | 87.453 | 0.074 |
B700 | 92.33 | 0.079 |
B900 | 83.801 | 0.101 |
Biomass | Pyrolysis Conditions | Biochar, mg/L | PS Dosage | Time, min | Pollutant Concentration | Degradation, % | References |
---|---|---|---|---|---|---|---|
Pomegranate peel biochar | At 850 °C for 3 h in N2 | 500 | 500 mg/L | 180 | [Losartan] = 500 μg/L | 95 | [47] |
Commercial biochar | - | 500 | 1 mM | 30 | [Phenol] = 10 mg/L | 100 | [19] |
Lemon stalks | At 850 °C under limited air | 100 | 500 mg/L | 20 | [SMX] = 0.5 mg/L | 100 | [53] |
Olive stones | At 850 °C under limited air | 300 | 1000 mg/L | 90 | [SMX] = 0.5 mg/L | 70 | [22] |
Hardwood | At 700 °C in an Ar atmosphere | 200 | 3 mM | 240 | [Lindane] = 0.1 mg/L | 90 | [24] |
Fe-tanned collagen fiber | Pre-carbonization at 400 °C for 2 h, activation with KOH, and calcination at 800 °C for 2 h under N2 | 100 | 5 mM | 20 | [MB] = 20 mg/L | 100 | [48] |
Sewage sludge | At 900 °C under limited air | 500 | 20 mg/L | 30 | [MB] = 10 mg/L | 91 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanafin, Y.N.; Turpanova, R.; Beisekova, M.; Poulopoulos, S.G. Sewage Sludge Biochar as a Persulfate Activator for Methylene Blue Degradation. Clean Technol. 2025, 7, 74. https://doi.org/10.3390/cleantechnol7030074
Kanafin YN, Turpanova R, Beisekova M, Poulopoulos SG. Sewage Sludge Biochar as a Persulfate Activator for Methylene Blue Degradation. Clean Technologies. 2025; 7(3):74. https://doi.org/10.3390/cleantechnol7030074
Chicago/Turabian StyleKanafin, Yerkanat N., Rauza Turpanova, Moldir Beisekova, and Stavros G. Poulopoulos. 2025. "Sewage Sludge Biochar as a Persulfate Activator for Methylene Blue Degradation" Clean Technologies 7, no. 3: 74. https://doi.org/10.3390/cleantechnol7030074
APA StyleKanafin, Y. N., Turpanova, R., Beisekova, M., & Poulopoulos, S. G. (2025). Sewage Sludge Biochar as a Persulfate Activator for Methylene Blue Degradation. Clean Technologies, 7(3), 74. https://doi.org/10.3390/cleantechnol7030074